[Une caractérisation des groupes de quaternions généralisés]
The goal of this Note is to give a characterization of generalized quaternion 2-groups by using their posets of cyclic subgroups.
Le but de cette Note est de donner une caractérisation des 2-groupes de quaternions généralisés en utilisant leur ensembles partiellement ordonnés de sous-groupes cycliques.
Accepté le :
Publié le :
Tărnăuceanu, Marius 1
@article{CRMATH_2010__348_13-14_731_0,
author = {T\u{a}rn\u{a}uceanu, Marius},
title = {A characterization of generalized quaternion 2-groups},
journal = {Comptes Rendus. Math\'ematique},
pages = {731--733},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {13-14},
doi = {10.1016/j.crma.2010.06.016},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.06.016/}
}
TY - JOUR AU - Tărnăuceanu, Marius TI - A characterization of generalized quaternion 2-groups JO - Comptes Rendus. Mathématique PY - 2010 SP - 731 EP - 733 VL - 348 IS - 13-14 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.06.016/ DO - 10.1016/j.crma.2010.06.016 LA - en ID - CRMATH_2010__348_13-14_731_0 ER -
%0 Journal Article %A Tărnăuceanu, Marius %T A characterization of generalized quaternion 2-groups %J Comptes Rendus. Mathématique %D 2010 %P 731-733 %V 348 %N 13-14 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.06.016/ %R 10.1016/j.crma.2010.06.016 %G en %F CRMATH_2010__348_13-14_731_0
Tărnăuceanu, Marius. A characterization of generalized quaternion 2-groups. Comptes Rendus. Mathématique, Tome 348 (2010) no. 13-14, pp. 731-733. doi: 10.1016/j.crma.2010.06.016
[1] Breaking points in subgroup lattices, Proceedings of Groups St. Andrews 2001 in Oxford, vol. 1, Cambridge University Press, 2003, pp. 59-62
[2] Endliche Gruppen, I, Springer-Verlag, Berlin, Heidelberg, New York, 1967
[3] Subgroup Lattices of Groups, de Gruyter Exp. Math., vol. 14, de Gruyter, Berlin, 1994
[4] Group Theory, I, Group Theory, II, Springer-Verlag, Berlin, 1982
[5] Groups Determined by Posets of Subgroups, Ed. Matrix Rom, Bucureşti, 2006
Cité par Sources :





