[La géométrie de Lie des fronts plats dans l'éspace hyperbolique]
We propose a Lie geometric point of view on flat fronts in hyperbolic space as special Ω-surfaces and discuss the Lie geometric deformation of flat fronts.
Nous proposons un point de vue de Lie géometrie sur les fronts plats dans l'éspace hyperbolique comme des surfaces Ω spéciales. Nous discutons ensuite la déformation Lie géometrique des fronts plats.
Accepté le :
Publié le :
Burstall, Francis E. 1 ; Hertrich-Jeromin, Udo 1 ; Rossman, Wayne 2
@article{CRMATH_2010__348_11-12_661_0,
author = {Burstall, Francis E. and Hertrich-Jeromin, Udo and Rossman, Wayne},
title = {Lie geometry of flat fronts in hyperbolic space},
journal = {Comptes Rendus. Math\'ematique},
pages = {661--664},
year = {2010},
publisher = {Elsevier},
volume = {348},
number = {11-12},
doi = {10.1016/j.crma.2010.04.018},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2010.04.018/}
}
TY - JOUR AU - Burstall, Francis E. AU - Hertrich-Jeromin, Udo AU - Rossman, Wayne TI - Lie geometry of flat fronts in hyperbolic space JO - Comptes Rendus. Mathématique PY - 2010 SP - 661 EP - 664 VL - 348 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2010.04.018/ DO - 10.1016/j.crma.2010.04.018 LA - en ID - CRMATH_2010__348_11-12_661_0 ER -
%0 Journal Article %A Burstall, Francis E. %A Hertrich-Jeromin, Udo %A Rossman, Wayne %T Lie geometry of flat fronts in hyperbolic space %J Comptes Rendus. Mathématique %D 2010 %P 661-664 %V 348 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2010.04.018/ %R 10.1016/j.crma.2010.04.018 %G en %F CRMATH_2010__348_11-12_661_0
Burstall, Francis E.; Hertrich-Jeromin, Udo; Rossman, Wayne. Lie geometry of flat fronts in hyperbolic space. Comptes Rendus. Mathématique, Tome 348 (2010) no. 11-12, pp. 661-664. doi: 10.1016/j.crma.2010.04.018
[1] Vorlesungen über Differentialgeometrie III, Grundlehren, vol. XXIX, Springer, Berlin, 1929
[2] Sur les surfaces R et les surfaces Ω, Comptes Rendus, Volume 153 (1911), pp. 590-593 (705–707)
[3] Sur les surfaces Ω, Comptes Rendus, Volume 153 (1911), pp. 927-929
[4] Flat surfaces in the hyperbolic 3-space, Math. Ann., Volume 316 (2000), pp. 419-435
[5] Introduction to Möbius Differential Geometry, Cambridge Univ. Press, Cambridge, 2003
[6] Discrete flat surfaces and linear Weingarten surfaces in hyperbolic 3-space, 2009 (Eprint) | arXiv
[7] Singularities of flat fronts in hyperbolic space, Pacific J. Math., Volume 221 (2005), pp. 303-352
[8] Flat fronts in hyperbolic space and their caustics, J. Math. Soc. Japan, Volume 59 (2007), pp. 265-299
[9] Deformation and applicability of surfaces in Lie sphere geometry, Tôhoku Math. J., Volume 58 (2006), pp. 161-187
Cité par Sources :





