[Dimension et mesure pour les applications rationnelles semi-hyperboliques de degré 2]
We prove that almost every non-hyperbolic rational map of degree 2 has at least one recurrent critical point. This estimate is optimal because the set of rational maps with all critical points non-recurrent is of full Hausdorff dimension.
Nous démontrons que presque toute application rationnelle semi-hyperbolique de degré 2 a au moins un point critique récurrent. Cette estimation est optimale parce que l'ensemble des applications rationnelles avec tous les points critiques non-récurrents est de pleine dimension de Hausdorff.
Accepté le :
Publié le :
Aspenberg, Magnus 1 ; Graczyk, Jacek 1
@article{CRMATH_2009__347_7-8_395_0,
author = {Aspenberg, Magnus and Graczyk, Jacek},
title = {Dimension and measure for semi-hyperbolic rational maps of degree 2},
journal = {Comptes Rendus. Math\'ematique},
pages = {395--400},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {7-8},
doi = {10.1016/j.crma.2009.02.016},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2009.02.016/}
}
TY - JOUR AU - Aspenberg, Magnus AU - Graczyk, Jacek TI - Dimension and measure for semi-hyperbolic rational maps of degree 2 JO - Comptes Rendus. Mathématique PY - 2009 SP - 395 EP - 400 VL - 347 IS - 7-8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.02.016/ DO - 10.1016/j.crma.2009.02.016 LA - en ID - CRMATH_2009__347_7-8_395_0 ER -
%0 Journal Article %A Aspenberg, Magnus %A Graczyk, Jacek %T Dimension and measure for semi-hyperbolic rational maps of degree 2 %J Comptes Rendus. Mathématique %D 2009 %P 395-400 %V 347 %N 7-8 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.02.016/ %R 10.1016/j.crma.2009.02.016 %G en %F CRMATH_2009__347_7-8_395_0
Aspenberg, Magnus; Graczyk, Jacek. Dimension and measure for semi-hyperbolic rational maps of degree 2. Comptes Rendus. Mathématique, Tome 347 (2009) no. 7-8, pp. 395-400. doi: 10.1016/j.crma.2009.02.016
[1] Rational Misiurewicz maps are rare II (Preprint Comm. Math. Phys., in press) | arXiv
[2] Julia and John, Bol. Soc. Brasil. Mat. (N.S.), Volume 25 (1994), pp. 1-30
[3] On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., Volume 18 (1985), pp. 287-343
[4] Quasiconformal Mappings in the Plane, Springer-Verlag, New York, 1973 (viii+258)
[5] Complex Dynamics and Renormalization, Annals of Mathematics Studies, vol. 135, Princeton Univ. Press, Princeton, NJ, 1994 (x+214)
[6] On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.), Volume 24 (1993), pp. 1-11
[7] On the dynamics of rational maps, Ann. Sci. École Norm. Sup., Volume 16 (1983), pp. 193-217
[8] La condition de Collet–Eckmann pour les orbites critiques recurrents, Ergod. Th. Dynam. Sys., Volume 27 (2007) no. 4, pp. 1267-1286
[9] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of Math. (2), Volume 147 (1998), pp. 225-267
Cité par Sources :





