[Déformations verselles microlocales des courbes planes ]
We introduce the notion of microlocal versal deformation of a plane curve. We construct equisingular versal deformations of Legendrian curves that are the conormal of a semi-quasi-homogeneous branch.
On introduit la notion de déformation verselle microlocale d'un germe de courbe plane. Nous construisons la déformation verselle équisingulière du conormal d'un germe de courbe plane irréductible semi-quasi-homogène.
Accepté le :
Publié le :
Cabral, João 1 ; Neto, Orlando 2
@article{CRMATH_2009__347_23-24_1409_0,
author = {Cabral, Jo\~ao and Neto, Orlando},
title = {Microlocal versal deformations of the plane curves $ {y}^{k}={x}^{n}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1409--1414},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {23-24},
doi = {10.1016/j.crma.2009.10.026},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2009.10.026/}
}
TY - JOUR
AU - Cabral, João
AU - Neto, Orlando
TI - Microlocal versal deformations of the plane curves $ {y}^{k}={x}^{n}$
JO - Comptes Rendus. Mathématique
PY - 2009
SP - 1409
EP - 1414
VL - 347
IS - 23-24
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2009.10.026/
DO - 10.1016/j.crma.2009.10.026
LA - en
ID - CRMATH_2009__347_23-24_1409_0
ER -
%0 Journal Article
%A Cabral, João
%A Neto, Orlando
%T Microlocal versal deformations of the plane curves $ {y}^{k}={x}^{n}$
%J Comptes Rendus. Mathématique
%D 2009
%P 1409-1414
%V 347
%N 23-24
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2009.10.026/
%R 10.1016/j.crma.2009.10.026
%G en
%F CRMATH_2009__347_23-24_1409_0
Cabral, João; Neto, Orlando. Microlocal versal deformations of the plane curves $ {y}^{k}={x}^{n}$. Comptes Rendus. Mathématique, Tome 347 (2009) no. 23-24, pp. 1409-1414. doi: 10.1016/j.crma.2009.10.026
[1] A. Araújo, O. Neto, Moduli of Legendrian curves, Ann. Fac. Sci. Toulouse Math., in press
[2] Introduction to Singularities and Deformations, Springer, 2007
[3] Analytic Functions of Several Complex Variables, Prentice-Hall, 1965
[4] On the versal deformation of a complex space with an isolated singularity, Math. Ann., Volume 196 (1972), pp. 23-29
[5] Microlocal analysis of prehomogeneous vector spaces, Invent. Math., Volume 62 (1980), pp. 117-179
[6] Singular Points of Plane Curves, London Math. Society, 2004
Cité par Sources :
☆ This research was partially supported by FEDER and FCT-Plurianual 2009.





