[Échantillonnage moyenne dans ]
In this Note, we show that any localized average sampler could not be a stable sampler for , but that there is a localized determining sampler for .
Dans cette Note, nous démontrons que tout échantillonneur moyen localisé ne peut pas être un échantillonneur stable pour , mais qu'un échantillonneur déterminant localisé existe pour .
Accepté le :
Publié le :
Nashed, M. Zuhair 1 ; Sun, Qiyu 1 ; Tang, Wai-Shing 2
@article{CRMATH_2009__347_17-18_1007_0,
author = {Nashed, M. Zuhair and Sun, Qiyu and Tang, Wai-Shing},
title = {Average sampling in $ {L}^{2}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {1007--1010},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {17-18},
doi = {10.1016/j.crma.2009.07.011},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2009.07.011/}
}
TY - JOUR
AU - Nashed, M. Zuhair
AU - Sun, Qiyu
AU - Tang, Wai-Shing
TI - Average sampling in $ {L}^{2}$
JO - Comptes Rendus. Mathématique
PY - 2009
SP - 1007
EP - 1010
VL - 347
IS - 17-18
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2009.07.011/
DO - 10.1016/j.crma.2009.07.011
LA - en
ID - CRMATH_2009__347_17-18_1007_0
ER -
%0 Journal Article
%A Nashed, M. Zuhair
%A Sun, Qiyu
%A Tang, Wai-Shing
%T Average sampling in $ {L}^{2}$
%J Comptes Rendus. Mathématique
%D 2009
%P 1007-1010
%V 347
%N 17-18
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2009.07.011/
%R 10.1016/j.crma.2009.07.011
%G en
%F CRMATH_2009__347_17-18_1007_0
Nashed, M. Zuhair; Sun, Qiyu; Tang, Wai-Shing. Average sampling in $ {L}^{2}$. Comptes Rendus. Mathématique, Tome 347 (2009) no. 17-18, pp. 1007-1010. doi: 10.1016/j.crma.2009.07.011
[1] Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces, Appl. Comput. Harmon. Anal., Volume 13 (2002), pp. 151-161
[2] Nonuniform sampling and reconstruction in shift-invariant space, SIAM Rev., Volume 43 (2001), pp. 585-620
[3] Convolution, average sampling and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., Volume 11 (2005), pp. 215-244
[4] Reconstructing signals with finite rate of innovation from noisy samples, Acta Appl. Math., Volume 107 (2009), pp. 339-372
[5] Sur la totalite des systemes d'exponentielles imaginaries, C. R. Acad. Sci. Paris, Volume 250 (1960), pp. 2102-2103
[6] Non-uniform average sampling and reconstruction of signals with finite rate of innovation, SIAM J. Math. Anal., Volume 38 (2006), pp. 1389-1422
[7] Sampling signals with finite rate of innovation, IEEE Trans. Signal Process., Volume 50 (2002), pp. 1417-1428
[8] Sampling – 50 years after Shannon, Proc. IEEE, Volume 88 (2000), pp. 569-587
[9] A general sampling theory for non-ideal acquisition devices, IEEE Trans. Signal Process., Volume 42 (1994), pp. 2915-2925
Cité par Sources :





