[Minimiseurs de la fonctionnelle de Kirchhoff : équations de Euler–Lagrange et régularité]
Let be a bounded -domain. In this Note we consider isometric immersions which minimize Kirchhoff's plate functional under boundary conditions prescribing the values of u and of ∇u on parts of ∂S. We derive the Euler–Lagrange equations satisfied by u and we derive regularity results for u.
Soit un -domaine borné. Dans cette Note on considère une immersion -isométrique qui minimise la fonctionnelle de Kirchhoff sous les conditions frontières imposant les valeurs de u et ∇u sur des partie de ∂S. On en déduit les équations de Euler–Lagrange satisfaites par u et un résultat de régularité pour u.
Accepté le :
Publié le :
Hornung, Peter 1
@article{CRMATH_2009__347_11-12_647_0,
author = {Hornung, Peter},
title = {Minimizers of {Kirchhoff's} plate functional: {Euler{\textendash}Lagrange} equations and regularity},
journal = {Comptes Rendus. Math\'ematique},
pages = {647--650},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {11-12},
doi = {10.1016/j.crma.2009.03.031},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2009.03.031/}
}
TY - JOUR AU - Hornung, Peter TI - Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity JO - Comptes Rendus. Mathématique PY - 2009 SP - 647 EP - 650 VL - 347 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.03.031/ DO - 10.1016/j.crma.2009.03.031 LA - en ID - CRMATH_2009__347_11-12_647_0 ER -
%0 Journal Article %A Hornung, Peter %T Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity %J Comptes Rendus. Mathématique %D 2009 %P 647-650 %V 347 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.03.031/ %R 10.1016/j.crma.2009.03.031 %G en %F CRMATH_2009__347_11-12_647_0
Hornung, Peter. Minimizers of Kirchhoff's plate functional: Euler–Lagrange equations and regularity. Comptes Rendus. Mathématique, Tome 347 (2009) no. 11-12, pp. 647-650. doi: 10.1016/j.crma.2009.03.031
[1] Constrained Willmore surfaces, Calc. Var., Volume 32 (2008), pp. 263-277
[2] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[3] P. Hornung, A density result for isometric immersions, MIS MPG Preprint, 2007
[4] Approximating isometric immersions, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008), pp. 189-192
[5] P. Hornung, Flat minimizers of the Willmore functional: Euler–Lagrange equations, Preprint, Universität Bonn, 2008
[6] P. Hornung, Regularity results for flat minimizers of the Willmore functional, Preprint, Universität Bonn, 2008
[7] B. Kirchheim, Geometry and Rigidity of Microstructures, Habilitation thesis, University of Leipzig, 2001
[8] Regularity properties of isometric immersions, Math. Z., Volume 251 (2005), pp. 313-331
[9] On the Sobolev space of isometric immersions, J. Differential Geom., Volume 66 (2004) no. 1, pp. 47-69
[10] The shape of a Möbius strip, Nature Materials, Volume 6 (2007), pp. 563-567
Cité par Sources :





