[Quelques conséquences de la conjecture polynomiale de Freiman–Ruzsa]
Assuming the Weak Polynomial Freiman–Ruzsa Conjecture, we derive some consequences on sum-products and the growth of subsets of .
En supposant la conjecture polynomiale faible de Freiman–Ruzsa, on en déduit certaines conséquences sur les ensembles sommes-produits ainsi que sur la croissance de sous-ensembles de .
Accepté le :
Publié le :
Chang, Mei-Chu 1
@article{CRMATH_2009__347_11-12_583_0,
author = {Chang, Mei-Chu},
title = {Some consequences of the {Polynomial} {Freiman{\textendash}Ruzsa} {Conjecture}},
journal = {Comptes Rendus. Math\'ematique},
pages = {583--588},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {11-12},
doi = {10.1016/j.crma.2009.04.006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2009.04.006/}
}
TY - JOUR AU - Chang, Mei-Chu TI - Some consequences of the Polynomial Freiman–Ruzsa Conjecture JO - Comptes Rendus. Mathématique PY - 2009 SP - 583 EP - 588 VL - 347 IS - 11-12 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.04.006/ DO - 10.1016/j.crma.2009.04.006 LA - en ID - CRMATH_2009__347_11-12_583_0 ER -
%0 Journal Article %A Chang, Mei-Chu %T Some consequences of the Polynomial Freiman–Ruzsa Conjecture %J Comptes Rendus. Mathématique %D 2009 %P 583-588 %V 347 %N 11-12 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.04.006/ %R 10.1016/j.crma.2009.04.006 %G en %F CRMATH_2009__347_11-12_583_0
Chang, Mei-Chu. Some consequences of the Polynomial Freiman–Ruzsa Conjecture. Comptes Rendus. Mathématique, Tome 347 (2009) no. 11-12, pp. 583-588. doi: 10.1016/j.crma.2009.04.006
[1] Estimates on exponential sums related to Diffie–Hellman distributions, GAFA, Volume 15 (2005) no. 1, pp. 1-34
[2] On the size of k-fold sum and product sets of integers, JAMS, Volume 17 (2004) no. 2, pp. 473-497
[3] J. Bourgain, M.-C. Chang, Sum-product theorems in algebraic number fields, Journal d'Analyse Mathematique, in press
[4] A polynomial bound in Freiman's Theorem, Duke Math. J., Volume 113 (2002) no. 3, pp. 399-419
[5] Product theorems in SL2 and SL3, J. Math. Jussieu, Volume 7 (2008) no. 1, pp. 1-25
[6] M.-C. Chang, On product sets in and , preprint
[7] Linear equations in variables which lie in a multiplicative group, Ann. Math., Volume 155 (2002), pp. 807-836
[8] H. Helfgott, Growth and generation in , preprint, 2008
[9] Additive Combinatorics, Cambridge University Press, 2006
Cité par Sources :





