Soit θ un nombre de Pisot inférieur à 2, m un entier rationnel positif, et l'ensemble des nombres réels pour P décrivant l'ensemble des polynômes à coefficients dans . On donne un minorant de la limite supérieure des pas de la progression constituée des éléments de .
Let θ be a Pisot number less than 2, m a positive rational integer, and the set of the polynomials with coefficients in evaluated at θ. We give a lower bound for the greatest limit point of common differences of consecutive elements of .
Accepté le :
Publié le :
Zaïmi, Toufik 1
@article{CRMATH_2009__347_1-2_5_0,
author = {Za{\"\i}mi, Toufik},
title = {Une remarque sur le spectre des nombres de {Pisot}},
journal = {Comptes Rendus. Math\'ematique},
pages = {5--8},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {1-2},
doi = {10.1016/j.crma.2008.11.010},
language = {fr},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.11.010/}
}
TY - JOUR AU - Zaïmi, Toufik TI - Une remarque sur le spectre des nombres de Pisot JO - Comptes Rendus. Mathématique PY - 2009 SP - 5 EP - 8 VL - 347 IS - 1-2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.11.010/ DO - 10.1016/j.crma.2008.11.010 LA - fr ID - CRMATH_2009__347_1-2_5_0 ER -
Zaïmi, Toufik. Une remarque sur le spectre des nombres de Pisot. Comptes Rendus. Mathématique, Tome 347 (2009) no. 1-2, pp. 5-8. doi: 10.1016/j.crma.2008.11.010
[1] Some computations on the spectra of Pisot and Salem numbers, Math. Comp., Volume 71 (2002), pp. 767-780
[2] On a property of Pisot numbers and related questions, Acta Math. Hungar., Volume 73 (1996), pp. 33-39
[3] Characterization of the unique expansion and related problems, Bull. Soc. Math. France, Volume 118 (1990), pp. 377-390
[4] On the sequence of the numbers of the form , , Acta Arith., Volume 83 (1998), pp. 201-210
[5] On Pisot numbers, Annales Univ. Sci. Budapest, Volume 39 (1996), pp. 95-99
[6] Developments in non integer bases, Acta Math. Hungar., Volume 79 (1998), pp. 57-83
[7] A property of Pisot numbers, J. Number Theory, Volume 97 (2002), pp. 305-316
[8] On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar., Volume 11 (1960), pp. 401-416
[9] On an approximation property of Pisot numbers, Acta Math. Hungar., Volume 96 (2002) no. 4, pp. 309-325
[10] On an approximation property of Pisot numbers II, J. Théor. Nombres Bordeaux, Volume 16 (2004), pp. 239-249
[11] Approximation by polynomials with bounded coefficients, J. Number Theory, Volume 127 (2007), pp. 103-117
Cité par Sources :





