[Une caractérisation de la classe des matrices supérieurement triangulaires à trace]
As a consequence of the vector-valued Hardy inequality it is given a characterization of upper triangular trace class matrices completely similar to that of classical Hardy space of analytic functions , as may be found for instance in Pavlović's book.
On donne une caractérisation de la classe des matrices supérieurement triangulaires à trace comme une conséquence de l'inégalité vectorielle de Hardy. Cette caractérisation est complètement similaire de celle valable por les espaces de Hardy.
Accepté le :
Publié le :
Popa, Nicolae 1, 2
@article{CRMATH_2009__347_1-2_59_0,
author = {Popa, Nicolae},
title = {A characterization of upper triangular trace class matrices},
journal = {Comptes Rendus. Math\'ematique},
pages = {59--62},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {1-2},
doi = {10.1016/j.crma.2008.11.020},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.11.020/}
}
TY - JOUR AU - Popa, Nicolae TI - A characterization of upper triangular trace class matrices JO - Comptes Rendus. Mathématique PY - 2009 SP - 59 EP - 62 VL - 347 IS - 1-2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2008.11.020/ DO - 10.1016/j.crma.2008.11.020 LA - en ID - CRMATH_2009__347_1-2_59_0 ER -
%0 Journal Article %A Popa, Nicolae %T A characterization of upper triangular trace class matrices %J Comptes Rendus. Mathématique %D 2009 %P 59-62 %V 347 %N 1-2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2008.11.020/ %R 10.1016/j.crma.2008.11.020 %G en %F CRMATH_2009__347_1-2_59_0
Popa, Nicolae. A characterization of upper triangular trace class matrices. Comptes Rendus. Mathématique, Tome 347 (2009) no. 1-2, pp. 59-62. doi: 10.1016/j.crma.2008.11.020
[1] Theorems of Hardy and Paley for vector valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc., Volume 323 (1991), pp. 335-367
[2] Hardy's inequality and the norm of exponential sums, Ann. of Math., Volume 113 (1981), pp. 613-618
[3] M. Pavlović, Introduction to function spaces on the disk, Matematicki Institut SANU, Beograd, 2004
[4] A strong convergence theorem for , Storrs, CT, 1980/1981 (Lecture Notes in Math.), Volume vol. 995, Springer-Verlag, Berlin (1983), pp. 169-173
Cité par Sources :





