[Approximation de par des immersions isométriques]
Let be a bounded Lipschitz domain and set . Under an additional regularity condition on the boundary ∂S (which is satisfied if it is piecewise continuously differentiable) we prove that the closure of agrees with .
Soient un domaine lipschitzien borné et l'ensemble . Sous une hypothèse supplémentaire de régularité sur la frontière ∂S (qui est satisfaite dans le cas où ∂S est continument différentiable par morceaux), nous prouvons que l'adhérence de est .
Accepté le :
Publié le :
Hornung, Peter 1
@article{CRMATH_2008__346_3-4_189_0,
author = {Hornung, Peter},
title = {Approximating $ {W}^{2,2}$ isometric immersions},
journal = {Comptes Rendus. Math\'ematique},
pages = {189--192},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {3-4},
doi = {10.1016/j.crma.2008.01.001},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/}
}
TY - JOUR
AU - Hornung, Peter
TI - Approximating $ {W}^{2,2}$ isometric immersions
JO - Comptes Rendus. Mathématique
PY - 2008
SP - 189
EP - 192
VL - 346
IS - 3-4
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2008.01.001/
DO - 10.1016/j.crma.2008.01.001
LA - en
ID - CRMATH_2008__346_3-4_189_0
ER -
Hornung, Peter. Approximating $ {W}^{2,2}$ isometric immersions. Comptes Rendus. Mathématique, Tome 346 (2008) no. 3-4, pp. 189-192. doi: 10.1016/j.crma.2008.01.001
[1] Singularities and computation of minimizers for variational problems, London Math. Soc. Lecture Note Ser., vol. 284, 2001, pp. 1-20
[2] Derivation of a plate theory for incompressible materials, C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 541-544
[3] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002), pp. 173-178
[4] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math., Volume 55 (2002), pp. 1461-1506
[5] P. Hornung, A density result for isometric immersions, preprint, available under http://analysis.math.uni-duisburg.de/publications/preprints/Hornung4.pdf
[6] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation thesis, University of Leipzig, 2001
[7] Regularity properties of isometric immersions, Math. Z., Volume 251 (2005) no. 2, pp. 313-331
[8] On the Sobolev space of isometric immersions, J. Differential Geom., Volume 66 (2004) no. 1, pp. 47-69
[9] Une justification partielle du modèle de plaque en flexion par Γ-convergence, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2001), pp. 587-592
[10] On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., Volume 167 (2003), pp. 179-209
Cité par Sources :





