[La plus petite valeur singulière d'une matrice carrée aléatoire est en ]
Let A be a matrix whose entries are real i.i.d. centered random variables with unit variance and suitable moment assumptions. Then the smallest singular value is of order with high probability. The lower estimate of this type was proved recently by the authors; in this Note we establish the matching upper estimate.
Soit A une matrice dont les entrées sont des variables aléatoires centrées réelles i.i.d. de variance 1 vérifiant une hypothèse adéquate de moment. Alors la plus petite valeur singulière est de l'ordre de avec grande probabilité. La minoration de a été récemment obtenue par les auteurs ; dans cette Note, nous prouvons la majoration.
Accepté le :
Publié le :
Rudelson, Mark 1 ; Vershynin, Roman 2
@article{CRMATH_2008__346_15-16_893_0,
author = {Rudelson, Mark and Vershynin, Roman},
title = {The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$},
journal = {Comptes Rendus. Math\'ematique},
pages = {893--896},
year = {2008},
publisher = {Elsevier},
volume = {346},
number = {15-16},
doi = {10.1016/j.crma.2008.07.009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2008.07.009/}
}
TY - JOUR
AU - Rudelson, Mark
AU - Vershynin, Roman
TI - The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$
JO - Comptes Rendus. Mathématique
PY - 2008
SP - 893
EP - 896
VL - 346
IS - 15-16
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2008.07.009/
DO - 10.1016/j.crma.2008.07.009
LA - en
ID - CRMATH_2008__346_15-16_893_0
ER -
%0 Journal Article
%A Rudelson, Mark
%A Vershynin, Roman
%T The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$
%J Comptes Rendus. Mathématique
%D 2008
%P 893-896
%V 346
%N 15-16
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2008.07.009/
%R 10.1016/j.crma.2008.07.009
%G en
%F CRMATH_2008__346_15-16_893_0
Rudelson, Mark; Vershynin, Roman. The least singular value of a random square matrix is $ \mathrm{O}({n}^{-1/2})$. Comptes Rendus. Mathématique, Tome 346 (2008) no. 15-16, pp. 893-896. doi: 10.1016/j.crma.2008.07.009
[1] Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., Volume 9 (1988), pp. 543-560
[2] The Littlewood–Offord problem and invertibility of random matrices, Adv. Math., Volume 218 (2008), pp. 600-633
[3] M. Rudelson, R. Vershynin, The smallest singular value of a random rectangular matrix, submitted for publication
[4] Collected Works, vol. V: Design of Computers, Theory of Automata and Numerical Analysis (Taub, A.H., ed.), A Pergamon Press Book The Macmillan Co., New York, 1963
Cité par Sources :





