[Coniveau sur un corps -adique et points sur un corps fini]
If the ℓ-adic cohomology of a projective smooth variety, defined over a -adic field K with finite residue field k, is supported in codimension ⩾1, then any model over the ring of integers of K has a k-rational point.
Si la cohomologie ℓ-adique d'une variété projective, lisse, définie sur un corps -adique K à corps residuel fini k, est supportée en codimension ⩾1, alors tout modèle sur l'anneau des entiers de K a un point rationnel.
Accepté le :
Publié le :
Esnault, Hélène 1
@article{CRMATH_2007__345_2_73_0,
author = {Esnault, H\'el\`ene},
title = {Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields},
journal = {Comptes Rendus. Math\'ematique},
pages = {73--76},
year = {2007},
publisher = {Elsevier},
volume = {345},
number = {2},
doi = {10.1016/j.crma.2007.05.017},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.05.017/}
}
TY - JOUR
AU - Esnault, Hélène
TI - Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields
JO - Comptes Rendus. Mathématique
PY - 2007
SP - 73
EP - 76
VL - 345
IS - 2
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2007.05.017/
DO - 10.1016/j.crma.2007.05.017
LA - en
ID - CRMATH_2007__345_2_73_0
ER -
%0 Journal Article
%A Esnault, Hélène
%T Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields
%J Comptes Rendus. Mathématique
%D 2007
%P 73-76
%V 345
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2007.05.017/
%R 10.1016/j.crma.2007.05.017
%G en
%F CRMATH_2007__345_2_73_0
Esnault, Hélène. Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields. Comptes Rendus. Mathématique, Tome 345 (2007) no. 2, pp. 73-76. doi: 10.1016/j.crma.2007.05.017
[1] Families of curves and alterations, Ann. Inst. Fourier, Volume 47 (1997) no. 2, pp. 599-621
[2] La conjecture de Weil, II, Publ. Math. IHES, Volume 52 (1981), pp. 137-252
[3] Deligne's integrality theorem in unequal characteristic and rational points over finite fields, with an appendix with P. Deligne, Ann. Math., Volume 164 (2006), pp. 715-730
[4] A proof of the absolute purity conjecture (after Gabber), Azumino (Advanced Studies in Pure Mathematics), Volume vol. 36, Mathematical Society of Japan (2002), pp. 153-183
Cité par Sources :





