[La tolologie de l'espace des boules symplectiques dans ]
In this Note we compute the full homotopy type of the space of symplectic embeddings of the standard ball with capacity into the 4-dimensional rational symplectic manifold where μ belongs to the interval and c is above the critical value .
Dans cette Note, nous calculons le type d'homotopie complet de l'espace des plongements symplectiques de la boule standard de capacité dans la 4-variété rationnelle où μ appartient à l'intervalle et c est plus grand que la valeur critique .
Accepté le :
Publié le :
Anjos, Sílvia 1 ; Lalonde, François 2
@article{CRMATH_2007__345_11_639_0,
author = {Anjos, S{\'\i}lvia and Lalonde, Fran\c{c}ois},
title = {The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$},
journal = {Comptes Rendus. Math\'ematique},
pages = {639--642},
year = {2007},
publisher = {Elsevier},
volume = {345},
number = {11},
doi = {10.1016/j.crma.2007.10.025},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.10.025/}
}
TY - JOUR
AU - Anjos, Sílvia
AU - Lalonde, François
TI - The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$
JO - Comptes Rendus. Mathématique
PY - 2007
SP - 639
EP - 642
VL - 345
IS - 11
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2007.10.025/
DO - 10.1016/j.crma.2007.10.025
LA - en
ID - CRMATH_2007__345_11_639_0
ER -
%0 Journal Article
%A Anjos, Sílvia
%A Lalonde, François
%T The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$
%J Comptes Rendus. Mathématique
%D 2007
%P 639-642
%V 345
%N 11
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2007.10.025/
%R 10.1016/j.crma.2007.10.025
%G en
%F CRMATH_2007__345_11_639_0
Anjos, Sílvia; Lalonde, François. The topology of the space of symplectic balls in $ {S}^{2}\times {S}^{2}$. Comptes Rendus. Mathématique, Tome 345 (2007) no. 11, pp. 639-642. doi: 10.1016/j.crma.2007.10.025
[1] Homotopy decomposition of a group of symplectomorphisms of , Topology, Volume 43 (2004), pp. 599-618
[2] The homotopy type of the space of symplectic balls in above the critical value | arXiv
[3] S. Anjos, F. Lalonde, M. Pinsonnault, in preparation
[4] Groupes d'automorphismes et plongements symplectiques de boules dans les variétés rationelles, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2002), pp. 931-934
[5] The topology of the space of symplectic balls in rational 4-manifolds, Duke Math. J., Volume 122 (2004) no. 2, pp. 347-397
[6] M. Pinsonnault, Symplectomorphism groups and embeddings of balls into rational ruled surfaces, Compositio Math., in press
Cité par Sources :





