[Sur la résolution des systèmes de Pfaff en dimension trois]
We establish that the Cauchy problem associated with a Pfaff system in dimension three has a unique solution under minimal regularity assumptions on its coefficients.
On établit que le problème de Cauchy associé à un système de Pfaff en dimension trois a une solution unique sous des hypothèses minimales de régularité sur ses coefficients.
Accepté le :
Publié le :
Mardare, Sorin 1
@article{CRMATH_2007__344_9_565_0,
author = {Mardare, Sorin},
title = {On the resolution of {Pfaff} systems in dimension three},
journal = {Comptes Rendus. Math\'ematique},
pages = {565--570},
year = {2007},
publisher = {Elsevier},
volume = {344},
number = {9},
doi = {10.1016/j.crma.2007.03.029},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.03.029/}
}
TY - JOUR AU - Mardare, Sorin TI - On the resolution of Pfaff systems in dimension three JO - Comptes Rendus. Mathématique PY - 2007 SP - 565 EP - 570 VL - 344 IS - 9 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.03.029/ DO - 10.1016/j.crma.2007.03.029 LA - en ID - CRMATH_2007__344_9_565_0 ER -
Mardare, Sorin. On the resolution of Pfaff systems in dimension three. Comptes Rendus. Mathématique, Tome 344 (2007) no. 9, pp. 565-570. doi: 10.1016/j.crma.2007.03.029
[1] Sobolev Spaces, Academic Press, 1975
[2] The fundamental theorem of surface theory with little regularity, J. Elasticity, Volume 73 (2003), pp. 251-290
[3] On Pfaff systems with coefficients and their applications in differential geometry, J. Math. Pures Appl., Volume 84 (2005), pp. 1659-1692
[4] On systems of first order linear partial differential equations with coefficients, Adv. Differential Equations, Volume 12 (2007), pp. 301-360
[5] Systems of total differential equations defined over simply connected domains, Ann. Math., Volume 35 (1934), pp. 730-734
Cité par Sources :





