[Sur des filtres ergodiques avec des données initiales erronées]
For a class of non-uniformly ergodic partly observable Markov processes, under observations subject to a Wiener process or i.i.d. noise, it is shown that a wrong initial data is forgotten with a certain rate.
On démontre que pour une classe de processus de Markov non-uniformément ergodiques avec des observations perturbées par un mouvement Brownien, le fait d'avoir des données initiales erronées est asymptotiquement oublié. La vitesse de convergence est explicitée.
Accepté le :
Publié le :
Kleptsyna, Marina L. 1, 2 ; Veretennikov, Alexander Yu. 2, 3
@article{CRMATH_2007__344_11_727_0,
author = {Kleptsyna, Marina L. and Veretennikov, Alexander Yu.},
title = {On ergodic filters with wrong initial data},
journal = {Comptes Rendus. Math\'ematique},
pages = {727--731},
year = {2007},
publisher = {Elsevier},
volume = {344},
number = {11},
doi = {10.1016/j.crma.2007.04.015},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2007.04.015/}
}
TY - JOUR AU - Kleptsyna, Marina L. AU - Veretennikov, Alexander Yu. TI - On ergodic filters with wrong initial data JO - Comptes Rendus. Mathématique PY - 2007 SP - 727 EP - 731 VL - 344 IS - 11 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2007.04.015/ DO - 10.1016/j.crma.2007.04.015 LA - en ID - CRMATH_2007__344_11_727_0 ER -
%0 Journal Article %A Kleptsyna, Marina L. %A Veretennikov, Alexander Yu. %T On ergodic filters with wrong initial data %J Comptes Rendus. Mathématique %D 2007 %P 727-731 %V 344 %N 11 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2007.04.015/ %R 10.1016/j.crma.2007.04.015 %G en %F CRMATH_2007__344_11_727_0
Kleptsyna, Marina L.; Veretennikov, Alexander Yu. On ergodic filters with wrong initial data. Comptes Rendus. Mathématique, Tome 344 (2007) no. 11, pp. 727-731. doi: 10.1016/j.crma.2007.04.015
[1] Exponential stability for nonlinear filtering of diffusion processes in a noncompact domain, Ann. Probab., Volume 26 (1998) no. 4, pp. 1552-1574
[2] Exponential stability for nonlinear filtering, Ann. Inst. H. Poincaré Probab. Statist., Volume 33 (1997) no. 6, pp. 697-725
[3] Asymptotic stability of the Wonham filter: ergodic and nonergodic signals, SIAM J. Control Optim., Volume 43 (2004) no. 2, pp. 643-669 (electronic)
[4] Exponential stability in discrete-time filtering for bounded observation noise, Systems Control Lett., Volume 30 (1997), pp. 185-193
[5] On discrete time filtres with wrong initial data (revised version), 2006 http://www.univ-lemans.fr/... (Prépublication no 06-3, de LSP, Univ. du Maine)
[6] On continuous time filtres with wrong initial data, 2006 http://www.univ-lemans.fr/... (Prépublication no 06-2 de LSP, Univ. du Maine)
[7] A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., Volume 44 (1980) no. 1, pp. 161-175 239 (in Russian)
[8] A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals, Stochastic Process. Appl., Volume 106 (2003), pp. 279-316
[9] Probability Measures on Metric Spaces, Academic Press, New York and London, 1967
[10] Stability of the pathwise filter equations for a time dependent signal on , Appl. Math. Optim., Volume 52 (2005), pp. 39-71
[11] On polynomial mixing and the rate of convergence for stochastic differential and difference equations, Teor. Veroyatn. i Primenen., Volume 44 (1999) no. 2, pp. 312-327 (Engl. transl. in Theory Probab. Appl., 44, 2, 2000, pp. 361-374)
Cité par Sources :





