Nous montrons certaines estimations a priori en dimension pour des équations du type courbure scalaire prescrite. Dans le cas particulier de la sphère , nous estimons la constante c dans l'inégalité .
We prove some a priori estimates in dimension for equations of type prescribed scalar curvature. In the particular case of the unit sphere we give an estimation of the constant c in the inequality .
Accepté le :
Publié le :
Skander Bahoura, Samy 1
@article{CRMATH_2005__341_1_25_0,
author = {Skander Bahoura, Samy},
title = {In\'egalit\'es de {Harnack} pour les solutions d'\'equations du type courbure scalaire prescrite},
journal = {Comptes Rendus. Math\'ematique},
pages = {25--28},
year = {2005},
publisher = {Elsevier},
volume = {341},
number = {1},
doi = {10.1016/j.crma.2005.05.018},
language = {fr},
url = {https://www.numdam.org/articles/10.1016/j.crma.2005.05.018/}
}
TY - JOUR AU - Skander Bahoura, Samy TI - Inégalités de Harnack pour les solutions d'équations du type courbure scalaire prescrite JO - Comptes Rendus. Mathématique PY - 2005 SP - 25 EP - 28 VL - 341 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2005.05.018/ DO - 10.1016/j.crma.2005.05.018 LA - fr ID - CRMATH_2005__341_1_25_0 ER -
%0 Journal Article %A Skander Bahoura, Samy %T Inégalités de Harnack pour les solutions d'équations du type courbure scalaire prescrite %J Comptes Rendus. Mathématique %D 2005 %P 25-28 %V 341 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2005.05.018/ %R 10.1016/j.crma.2005.05.018 %G fr %F CRMATH_2005__341_1_25_0
Skander Bahoura, Samy. Inégalités de Harnack pour les solutions d'équations du type courbure scalaire prescrite. Comptes Rendus. Mathématique, Tome 341 (2005) no. 1, pp. 25-28. doi: 10.1016/j.crma.2005.05.018
[1] Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, 1998
[2] Différentes estimations du pour l'équation de la courbure sclaire prescrite en dimension , J. Math. Pures Appl. (9), Volume 82 (2003) no. 1, pp. 43-66
[3] A supinf inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal., Volume 115 (1993) no. 2, pp. 344-358
[4] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., Volume 36 (1983) no. 4, pp. 437-477
[5] On the positivity of the effective action in a théory of random surfaces, Commun. Math. Phys., Volume 86 (1982), pp. 321-326
[6] On the eigenfunctions of the equation , Dokl. Akad. Nauk SSSR, Volume 165 (1965), pp. 36-39
[7] A supinf inequality for the equation , C. R. Acad. Sci. Paris Sér. I Math., Volume 315 (1992) no. 2, pp. 159-164
Cité par Sources :





