[Queue de la solution stationnaire de l'équation à coefficients markoviens]
In this Note, we deal with the real stochastic difference equation , , where the sequence is a finite state space Markov chain. By means of the renewal theory, we give a precise description of the situation where the tail of its stationary solution exhibits power law behavior.
On étudie la queue de la solution stationnaire de l'équation , , où est une chaîne de Markov à espace d'états fini. Par des méthodes de renouvellement, on donne une caractérisation détaillée du cas où la queue est polynômiale.
Accepté le :
Publié le :
de Saporta, Benoîte 1
@article{CRMATH_2005__340_1_55_0,
author = {de Saporta, Beno{\^\i}te},
title = {Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with {Markovian} coefficients},
journal = {Comptes Rendus. Math\'ematique},
pages = {55--58},
year = {2005},
publisher = {Elsevier},
volume = {340},
number = {1},
doi = {10.1016/j.crma.2004.11.018},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.11.018/}
}
TY - JOUR
AU - de Saporta, Benoîte
TI - Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients
JO - Comptes Rendus. Mathématique
PY - 2005
SP - 55
EP - 58
VL - 340
IS - 1
PB - Elsevier
UR - https://www.numdam.org/articles/10.1016/j.crma.2004.11.018/
DO - 10.1016/j.crma.2004.11.018
LA - en
ID - CRMATH_2005__340_1_55_0
ER -
%0 Journal Article
%A de Saporta, Benoîte
%T Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients
%J Comptes Rendus. Mathématique
%D 2005
%P 55-58
%V 340
%N 1
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.crma.2004.11.018/
%R 10.1016/j.crma.2004.11.018
%G en
%F CRMATH_2005__340_1_55_0
de Saporta, Benoîte. Tail of the stationary solution of the stochastic equation $ {Y}_{n+1}={a}_{n}{Y}_{n}+{b}_{n}$ with Markovian coefficients. Comptes Rendus. Mathématique, Tome 340 (2005) no. 1, pp. 55-58. doi: 10.1016/j.crma.2004.11.018
[1] Applied Probability and Queues, Wiley, Chichester, 1987
[2] The stochastic equation with stationary coefficients, Adv. Appl. Probab., Volume 18 (1986), pp. 211-220
[3] Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Volume 1 (1991), pp. 26-166
[4] Products of random affine transformations, Lithuanian Math. J., Volume 20 (1980), pp. 279-282
[5] Estimation, inference and forecasting of time series subject to change in regime (Maddala, G.; Rao, C.R.; Vinod, D.H., eds.), Handbook of Statistics, vol. 11, 1993, pp. 230-260
[6] Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248
[7] Renewal theory for functionals of a Markov chain with general state space, Ann. Probab., Volume 2 (1974), pp. 355-386
[8] C. Klüppelberg, S. Pergamenchtchikov, The tail of the stationary distribution of a random coefficient AR(q) model, preprint, 2002
[9] E. Le Page, Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires, Séminaires de probabilités de Rennes, 1983
[10] Renewal theorem for a system of renewal equations, Ann. Inst. H. Poincare Probab. Statist., Volume 39 (2003), pp. 823-838
Cité par Sources :





