[Noyaux de Bergman généralisés sur les variétés symplectiques.]
We study the asymptotic of the generalized Bergman kernels of the renormalized Bochner–Laplacian on high tensor powers of a positive line bundle on compact symplectic manifolds.
On étudie le développement asymptotique du noyau de Bergman généralisé du Laplacien de Bochner renormalisé associé à une puissance tendant vers l'infini d'un fibré en droites positif sur une variété symplectique compacte.
Publié le :
Ma, Xiaonan 1 ; Marinescu, George 2
@article{CRMATH_2004__339_7_493_0,
author = {Ma, Xiaonan and Marinescu, George},
title = {Generalized {Bergman} kernels on symplectic manifolds},
journal = {Comptes Rendus. Math\'ematique},
pages = {493--498},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {7},
doi = {10.1016/j.crma.2004.07.016},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.07.016/}
}
TY - JOUR AU - Ma, Xiaonan AU - Marinescu, George TI - Generalized Bergman kernels on symplectic manifolds JO - Comptes Rendus. Mathématique PY - 2004 SP - 493 EP - 498 VL - 339 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2004.07.016/ DO - 10.1016/j.crma.2004.07.016 LA - en ID - CRMATH_2004__339_7_493_0 ER -
%0 Journal Article %A Ma, Xiaonan %A Marinescu, George %T Generalized Bergman kernels on symplectic manifolds %J Comptes Rendus. Mathématique %D 2004 %P 493-498 %V 339 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2004.07.016/ %R 10.1016/j.crma.2004.07.016 %G en %F CRMATH_2004__339_7_493_0
Ma, Xiaonan; Marinescu, George. Generalized Bergman kernels on symplectic manifolds. Comptes Rendus. Mathématique, Tome 339 (2004) no. 7, pp. 493-498. doi: 10.1016/j.crma.2004.07.016
[1] Complex immersions and Quillen metrics, Publ. Math. IHES, Volume 74 (1991), pp. 1-297
[2] The spectral density function for the Laplacian on high tensor powers of a line bundle, Ann. Global Anal. Geom., Volume 21 (2002), pp. 269-286
[3] The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1-23
[4] On the asymptotic expansion of Bergman kernel, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 193-198 (The full version:) | arXiv
[5] The Laplace operator on the nth tensor power of a line bundle: eigenvalues which are bounded uniformly in n, Asymptotic Anal., Volume 1 (1988), pp. 105-113
[6] On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Am. J. Math., Volume 122 (2000), pp. 235-273
[7] The Dirac operator on high tensor powers of a line bundle, Math. Z., Volume 240 (2002), pp. 651-664
[8] X. Ma, G. Marinescu, Generalized Bergman kernels on symplectic manifolds, Preprint
[9] X. Wang, Thesis, 2002
[10] Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices, Volume 6 (1998), pp. 317-331
Cité par Sources :





