[Un nouveau concept de mesure réduite pour des équations elliptiques non linéaires.]
We study the existence of solutions of the nonlinear problem
| (i) |
On étudie l'existence de solutions du problème non linéaire
| (ii) |
Publié le :
Brezis, Haïm 1, 2 ; Marcus, Moshe 3 ; Ponce, Augusto C. 1, 2
@article{CRMATH_2004__339_3_169_0,
author = {Brezis, Ha{\"\i}m and Marcus, Moshe and Ponce, Augusto C.},
title = {A new concept of reduced measure for nonlinear elliptic equations},
journal = {Comptes Rendus. Math\'ematique},
pages = {169--174},
year = {2004},
publisher = {Elsevier},
volume = {339},
number = {3},
doi = {10.1016/j.crma.2004.05.012},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.crma.2004.05.012/}
}
TY - JOUR AU - Brezis, Haïm AU - Marcus, Moshe AU - Ponce, Augusto C. TI - A new concept of reduced measure for nonlinear elliptic equations JO - Comptes Rendus. Mathématique PY - 2004 SP - 169 EP - 174 VL - 339 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2004.05.012/ DO - 10.1016/j.crma.2004.05.012 LA - en ID - CRMATH_2004__339_3_169_0 ER -
%0 Journal Article %A Brezis, Haïm %A Marcus, Moshe %A Ponce, Augusto C. %T A new concept of reduced measure for nonlinear elliptic equations %J Comptes Rendus. Mathématique %D 2004 %P 169-174 %V 339 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2004.05.012/ %R 10.1016/j.crma.2004.05.012 %G en %F CRMATH_2004__339_3_169_0
Brezis, Haïm; Marcus, Moshe; Ponce, Augusto C. A new concept of reduced measure for nonlinear elliptic equations. Comptes Rendus. Mathématique, Tome 339 (2004) no. 3, pp. 169-174. doi: 10.1016/j.crma.2004.05.012
[1] Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), Volume 34 (1984), pp. 185-206
[2] Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equations, Volume 3 (2004), pp. 673-770
[3] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 13 (1996), pp. 539-551
[4] Some variational problems of the Thomas–Fermi type, Proc. Internat. School, Erice, 1978 (Cottle, R.W.; Giannessi, F.; Lions, J.-L., eds.), Wiley, Chichester (1980), pp. 53-73
[5] Nonlinear elliptic equations involving measures (Bardos, C.; Damlamian, A.; Diaz, J.I.; Hernandez, J., eds.), Contributions to Nonlinear Partial Differential Equations, Madrid, 1981, Pitman, Boston, MA, 1983, pp. 82-89
[6] Kato's inequality when Δu is a measure, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 599-604
[7] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in preparation
[8] Semilinear second-order elliptic equations in , J. Math. Soc. Japan, Volume 25 (1973), pp. 565-590
[9] L. Dupaigne, A.C. Ponce, Singularities of positive supersolutions in elliptic PDEs, Selecta Math. (N.S.), in press
[10] On a semilinear equation in involving bounded measures, Proc. Roy. Soc. Edinburgh Sect. A, Volume 95 (1983), pp. 181-202
Cité par Sources :





