The paper concerns on an infinite dimensional Hilbert space, the existence and uniqueness of absolutely continuous solutions, for Lipschitz single-valued perturbations of evolution problems involving maximal-monotone operators. This result allows us to extend to optimal control problems associated with such equations, the relaxation theorems with Young measures proved recently in [S. Saïdi, L. Thibault and M.F. Yarou, Numer. Funct. Anal. Optim. 34 (2013) 1156–1186].
Accepté le :
DOI : 10.1051/cocv/2015056
Keywords: Maximal monotone operators, optimal control, pseudo-distance, Lipschitz perturbation, absolutely continuous, Young measures
Saïdi, Soumia 1 ; Yarou, Mustapha Fateh 1
@article{COCV_2017__23_2_455_0,
author = {Sa{\"\i}di, Soumia and Yarou, Mustapha Fateh},
title = {Control problems governed by time-dependent maximal monotone operators},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {455--473},
year = {2017},
publisher = {EDP Sciences},
volume = {23},
number = {2},
doi = {10.1051/cocv/2015056},
mrnumber = {3608089},
zbl = {1367.34083},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2015056/}
}
TY - JOUR AU - Saïdi, Soumia AU - Yarou, Mustapha Fateh TI - Control problems governed by time-dependent maximal monotone operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 455 EP - 473 VL - 23 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2015056/ DO - 10.1051/cocv/2015056 LA - en ID - COCV_2017__23_2_455_0 ER -
%0 Journal Article %A Saïdi, Soumia %A Yarou, Mustapha Fateh %T Control problems governed by time-dependent maximal monotone operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 455-473 %V 23 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2015056/ %R 10.1051/cocv/2015056 %G en %F COCV_2017__23_2_455_0
Saïdi, Soumia; Yarou, Mustapha Fateh. Control problems governed by time-dependent maximal monotone operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 455-473. doi: 10.1051/cocv/2015056
J.P. Aubin and A. Celina, Differential inclusions, Set-valued maps and viability theory. Springer-Verlag Berlin Heidelberg (1984). | Zbl | MR
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Lect. Notes Math. North-Holland (1973). | Zbl | MR
, and , Functional evolution equations governed by nonconvex sweeping process. J. Nonlin. Convex Anal. 2 (2001) 217–241. | MR | Zbl
, and , Control problems governed by functional evolution inclusions with Young measures. J. Nonlin. Convex Anal. 5 (2004) 131–152. | Zbl | MR
C. Castaing, P. Raynaud de Fitte and M. Valadier, Young measures on Topological Spaces With Applications in Control Theory and Probability Theory. Kluwer Academic Publishers, Dordrecht (2004). | Zbl | MR
and , Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program. Ser. B 104 (2005) 347–373. | Zbl | MR | DOI
, Sur la généralisation de la notion de commande d’un système guidable. Rev. Française Inform. Rech. Oper. 4 (1967) 7–32. | Zbl | Numdam | MR
A. Jawhar, Existence de solutions optimales pour des problèmes de contrôle de systèmes gouvernés par des équations différentielles multivoques. Sém. Anal. Convexe Montpellier exposé No, 1, Montpellier, France (1985). | Zbl | MR
and , BV solutions to evolution problems with time-dependent domains. Set-Valued Anal. 5 (1997) 57–72. | Zbl | MR | DOI
V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract spaces. Pergamon Press, Oxford (1991). | Zbl | MR
M.D.P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems Shocks and Dry Friction. Birkhäuser-Verlag, Basel (1993). | Zbl | MR
, Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Eq. 26 (1977) 347–374. | Zbl | MR | DOI
S. Saïdi and M.F. Yarou, Control and viscosity results for problems governed by maximal monotone operators. To be submitted (2017).
, and , Relaxation of optimal control problems involving time dependent subdifferential operators. Numer. Funct. Anal. Optim. 34 (2013) 1156–1186. | Zbl | MR | DOI
, Nonstationary dissipative evolution equations in a Hilbert space. Nonlin. Anal. 17 (1991) 499–518. | Zbl | MR | DOI
J. Warga, Optimal control of differential and functional equations. Academic Press, New York (1972). | Zbl | MR
Cité par Sources :





