A lower semicontinuity result in BV is obtained for quasiconvex integrals with subquadratic growth. The key steps in this proof involve obtaining boundedness properties for an extension operator, and a precise blow-up technique that uses fine properties of Sobolev maps. A similar result is obtained by Kristensen in [Calc. Var. Partial Differ. Equ. 7 (1998) 249-261], where there are weaker asssumptions on convergence but the integral needs to satisfy a stronger growth condition.
Keywords: lower semicontinuity, quasiconvex integrals, functions of bounded variation
@article{COCV_2013__19_2_555_0,
author = {Soneji, Parth},
title = {Lower semicontinuity in {BV} of quasiconvex integrals with subquadratic growth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {555--573},
year = {2013},
publisher = {EDP Sciences},
volume = {19},
number = {2},
doi = {10.1051/cocv/2012021},
mrnumber = {3049723},
zbl = {1263.49012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2012021/}
}
TY - JOUR AU - Soneji, Parth TI - Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 555 EP - 573 VL - 19 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2012021/ DO - 10.1051/cocv/2012021 LA - en ID - COCV_2013__19_2_555_0 ER -
%0 Journal Article %A Soneji, Parth %T Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 555-573 %V 19 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2012021/ %R 10.1051/cocv/2012021 %G en %F COCV_2013__19_2_555_0
Soneji, Parth. Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 2, pp. 555-573. doi: 10.1051/cocv/2012021
[1] and , New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994) 329-371. | Zbl | MR
[2] and , On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76-97. | Zbl | MR
[3] , , and , Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). | Zbl | MR
[4] and , W1, p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | Zbl | MR
[5] , and , The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. of R. Soc. Edinburgh Sect. A 128 (1998) 463-479. | Zbl | MR
[6] and , Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat. 39 (1990) 99-129. | Zbl | MR
[7] , and , Lower semicontinuity in a borderline case. Preprint (2008).
[8] , Relaxation of an area-like functional for the function | Zbl | MR
[9] , Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). | Zbl | MR
[10] , , and , Manifold constrained variational problems. Calc. Var. Partial Differ. Equ. 9 (1999) 185-206. | Zbl | MR
[11] and , Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997) 309-338. | Zbl | MR | Numdam
[12] and , From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma 4 (2005) 45-74. | Zbl | MR
[13] and , Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal. 7 (1997) 57-81. | Zbl | MR
[14] and , Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081-1098. | Zbl | MR
[15] and , Relaxation of quasiconvex functionals in BV(Ω, Rp) for integrands f(x, u, ∇u). Arch. Ration. Mech. Anal. 123 (1993) 1-49. | Zbl | MR
[16] I. Fonseca, G. Leoni and S. Müller, 𝒜 quasiconvexity: weak-star convergence and the gap. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21 (2004) 209-236. | Zbl | Numdam
[17] , and , Limits of the improved integrability of the volume forms. Indiana Univ. Math. J. 44 (1995) 305-339. | Zbl | MR
[18] and , Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2001). | Zbl | MR
[19] , Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Equ. 7 (1998) 249-261. | Zbl | MR
[20] , Weak lower semicontinuity of polyconvex integrals. Proc. of R. Soc. Edinburgh Sect. A 123 (1993) 681-691. | Zbl | MR
[21] , Weak lower semicontinuity of polyconvex and quasiconvex integrals. Preprint (1993). | MR
[22] , Lower semicontinuity of quasiconvex integrals. Manusc. Math. 85 (1994) 419-428. | Zbl | MR
[23] , On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 391-409. | Zbl | MR | Numdam
[24] , Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125-149. | Zbl | MR
[25] , On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41 (1992) 295-301. | Zbl | MR
[26] , Lower semicontinuity and Young measures in BV without Alberti's rank-one theorem. Adv. Calc. Var. 5 (2012) 127-159. | Zbl | MR
[27] , Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). | Zbl | MR
[28] , A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math. 102 (1959) 23-32. | Zbl | MR
[29] , On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. | Zbl | MR
[30] , Quasiconvex functions with subquadratic growth. Proc. of R. Soc. London A 433 (1991) 723-725. | Zbl | MR
[31] , A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992) 313-326. | Zbl | MR | Numdam
[32] , Weakly differentiable functions, Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120 (1989). | Zbl | MR
Cité par Sources :





