Recall that a smooth Riemannian metric on a simply connected domain can be realized as the pull-back metric of an orientation preserving deformation if and only if the associated Riemann curvature tensor vanishes identically. When this condition fails, one seeks a deformation yielding the closest metric realization. We set up a variational formulation of this problem by introducing the non-Euclidean version of the nonlinear elasticity functional, and establish its Γ-convergence under the proper scaling. As a corollary, we obtain new necessary and sufficient conditions for existence of a W2,2 isometric immersion of a given 2d metric into .
Keywords: non-euclidean plates, nonlinear elasticity, gamma convergence, calculus of variations, isometric immersions
@article{COCV_2011__17_4_1158_0,
author = {Lewicka, Marta and Reza Pakzad, Mohammad},
title = {Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1158--1173},
year = {2011},
publisher = {EDP Sciences},
volume = {17},
number = {4},
doi = {10.1051/cocv/2010039},
mrnumber = {2859870},
zbl = {1300.74028},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2010039/}
}
TY - JOUR
AU - Lewicka, Marta
AU - Reza Pakzad, Mohammad
TI - Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2011
SP - 1158
EP - 1173
VL - 17
IS - 4
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv/2010039/
DO - 10.1051/cocv/2010039
LA - en
ID - COCV_2011__17_4_1158_0
ER -
%0 Journal Article
%A Lewicka, Marta
%A Reza Pakzad, Mohammad
%T Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 1158-1173
%V 17
%N 4
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2010039/
%R 10.1051/cocv/2010039
%G en
%F COCV_2011__17_4_1158_0
Lewicka, Marta; Reza Pakzad, Mohammad. Scaling laws for non-euclidean plates and the $W^{2,2}$ isometric immersions of riemannian metrics. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1158-1173. doi: 10.1051/cocv/2010039
[1] and , On the smoothness of isometries. Duke Math. J. 37 (1970) 741-750. | Zbl | MR
[2] , An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser (1993). | Zbl | MR
[3] , and , Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57 (2009) 762-775. | MR
[4] , and , A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | Zbl | MR
[5] , , and , Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Math. Acad. Sci. Paris 336 (2003) 697-702. | Zbl | MR
[6] , and , A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180 (2006) 183-236. | Zbl | MR
[7] , Partial Differential Relations. Springer-Verlag, Berlin-Heidelberg (1986). | Zbl | MR
[8] and , The Weyl problem with nonnegative Gauss curvature. J. Diff. Geometry 39 (1994) 331-342. | Zbl | MR
[9] and , Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs 130. American Mathematical Society, Providence (2006). | Zbl | MR
[10] and , Isometric embedding of the 2-sphere with nonnegative curvature in . Math. Z. 219 (1995) 323-334. | Zbl | MR
[11] , Isometric embeddings of surfaces with nonnegative curvature in . Duke Math. J. 67 (1992) 423-459. | Zbl | MR
[12] , and , Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315 (2007) 1116-1120. | Zbl | MR
[13] , On C1 isometric embeddings. I. Indag. Math. 17 (1955) 545-556. | Zbl
[14] , On C1 isometric embeddings. II. Indag. Math. 17 (1955) 683-689. | Zbl
[15] , and , A nonlinear theory for shells with slowly varying thickness. C.R. Acad. Sci. Paris, Ser. I 347 (2009) 211-216. | Zbl | MR
[16] , and , Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IX (2010) 1-43. | MR | Numdam
[17] , A Lusin property of Sobolev functions. Indiana U. Math. J. 26 (1977) 645-651. | Zbl | MR
[18] , An example of a two-dimensional Riemannian metric which does not admit a local realization in E3. Dokl. Akad. Nauk. SSSR (N.S.) 198 (1971) 42-43. [Soviet Math. Dokl. 12 (1971) 729-730.] | Zbl | MR
[19] , A Comprehensive Introduction to Differential Geometry. Third edition, Publish or Perish Inc. (1999). | Zbl
Cité par Sources :





