We prove global internal controllability in large time for the nonlinear Schrödinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L2. We also get a regularity result about the control if the data are assumed smoother.
Keywords: controllability, stabilization, nonlinear Schrödinger equation, Bourgain spaces
@article{COCV_2010__16_2_356_0,
author = {Laurent, Camille},
title = {Global controllability and stabilization for the nonlinear {Schr\"odinger} equation on an interval},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {356--379},
year = {2010},
publisher = {EDP Sciences},
volume = {16},
number = {2},
doi = {10.1051/cocv/2009001},
mrnumber = {2654198},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv/2009001/}
}
TY - JOUR AU - Laurent, Camille TI - Global controllability and stabilization for the nonlinear Schrödinger equation on an interval JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 356 EP - 379 VL - 16 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2009001/ DO - 10.1051/cocv/2009001 LA - en ID - COCV_2010__16_2_356_0 ER -
%0 Journal Article %A Laurent, Camille %T Global controllability and stabilization for the nonlinear Schrödinger equation on an interval %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 356-379 %V 16 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv/2009001/ %R 10.1051/cocv/2009001 %G en %F COCV_2010__16_2_356_0
Laurent, Camille. Global controllability and stabilization for the nonlinear Schrödinger equation on an interval. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 356-379. doi: 10.1051/cocv/2009001
[1] and , Mesures de défaut : observation et contrôle de plaques. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 621-626. | Zbl
[2] and , Interpolation Spaces, An Introduction. Springer Verlag (1976). | Zbl
[3] , Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I. GAFA Geom. Funct. Anal. 3 (1993) 107-156. | Zbl
[4] , Global Solutions of Nonlinear Schrödinger Equations, in Colloquium publications 46, American Mathematical Society, Providence, RI (1999) 105. | Zbl
[5] and , Geometric control in the presence of a black box. J. Amer. Math. Soc. 17 (2004) 443-471. | Zbl
[6] , and , Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math. 126 (2004) 569-605. | Zbl
[7] and , Analysis of the HUM Control Operator and Exact Controllability for Semilinear Waves in Uniform Time. Preprint. | Zbl
[8] , and , Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36 (2003) 525-551. | Zbl | Numdam
[9] , and , Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z. 254 (2006) 729-749. | Zbl
[10] , Microlocal defect measures. Comm. Partial Diff. Equ. 16 (1991) 1762-1794. | Zbl
[11] , Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, in Séminaire Bourbaki 37, exposé 796 (1994-1995) 163-187. | Zbl | Numdam
[12] , Carleman type estimates in an anisotropic case and applications. J. Differ. Equ. 105 (1993) 217-238. | Zbl
[13] , Contrôle interne exact des vibrations d'une plaque rectangulaire. Portugal. Math. 47 (1990) 423-429. | Zbl
[14] and , Fourier Series in Control Theory. Springer (2005). | Zbl
[15] , Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. | Zbl
[16] , Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32 (1994) 24-34. | Zbl
[17] , Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425-444. | Zbl
[18] , On ill-posedness for the one-dimensional periodic cubic Schrödinger equation. Math. Res. Lett. (to appear). | Zbl
[19] , Observability and control of Schrödinger equations. SIAM J. Control Optim. 40 (2001) 211-230. | Zbl
[20] and , Exact controllability and stabilization of the nonlinear Schrödinger equation on a bounded interval. SIAM J. Control Optim. (to appear). | Zbl
[21] , Nonlinear Dispersive Equations, Local and global Analysis, CBMS Regional Conference Series in Mathematics 106. American Mathematical Society (2006). | Zbl
[22] and , Fast and strongly localized observation for the Schrödinger equation. Trans. Amer. Math. Soc. (to appear) iecn.u-nancy.fr. | Zbl
[23] , Exact controllability for the semilinear wave equation. J. Math. Pures Appl. 69 (1990) 33-55. | Zbl
Cité par Sources :






