The control of the surface of water in a long canal by means of a wavemaker is investigated. The fluid motion is governed by the Korteweg-de Vries equation in lagrangian coordinates. The null controllability of the elevation of the fluid surface is obtained thanks to a Carleman estimate and some weighted inequalities. The global uncontrollability is also established.
Keywords: Korteweg-de Vries equation, lagrangian coordinates, exact boundary controllability, Carleman estimate
@article{COCV_2004__10_3_346_0,
author = {Rosier, Lionel},
title = {Control of the surface of a fluid by a wavemaker},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {346--380},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {3},
doi = {10.1051/cocv:2004012},
mrnumber = {2084328},
zbl = {1094.93014},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004012/}
}
TY - JOUR AU - Rosier, Lionel TI - Control of the surface of a fluid by a wavemaker JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 346 EP - 380 VL - 10 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004012/ DO - 10.1051/cocv:2004012 LA - en ID - COCV_2004__10_3_346_0 ER -
%0 Journal Article %A Rosier, Lionel %T Control of the surface of a fluid by a wavemaker %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 346-380 %V 10 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004012/ %R 10.1051/cocv:2004012 %G en %F COCV_2004__10_3_346_0
Rosier, Lionel. Control of the surface of a fluid by a wavemaker. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 3, pp. 346-380. doi: 10.1051/cocv:2004012
[1] , and, Boundary values problems in mechanics of nonhomogeneous fluids. North-Holland, Amsterdam (1990). | Zbl | MR
[2] and, Strong solutions in of degenerate parabolic equations. J. Differ. Equations 119 (1995) 473-502. | Zbl | MR
[3] , and, Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory. J. Nonlinear Sci. 12 (2002) 283-318. | Zbl | MR
[4] , and, A Non-homogeneous Boundary-Value Problem for the Korteweg-de Vries Equation Posed on a Finite Domain. Commun. Partial Differ. Equations 28 (2003) 1391-1436. | Zbl | MR
[5] and, The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. | Zbl | MR
[6] , On the controllability of the 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | Zbl | MR
[7] , Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 513-554. | Zbl | MR | Numdam
[8] , Exact boundary controllability of the Korteweg-de Vries equation around a non-trivial stationary solution. Int. J. Control 74 (2001) 1096-1106. | Zbl | MR
[9] , Null controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87-103. | Zbl | MR | Numdam
[10] and, On controllability of certain systems simulating a fluid flow, in Flow Control, M.D. Gunzburger Ed., Springer-Verlag, New York, IMA Vol. Math. Appl. 68 (1995) 149-184. | Zbl | MR
[11] , On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Stud. App. Math. 8 (1983) 93-128. | Zbl | MR
[12] and, Problèmes aux limites non homogènes, Vol. 1. Dunod, Paris (1968). | Zbl
[13] , Étude et contrôle des équations de la théorie “Shallow water” en dimension un. Ph.D. thesis, Université Paul Sabatier, Toulouse III (1998).
[14] , On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677-1696. | Zbl | MR
[15] and, On the controllability of a linear coupled system of Korteweg-de Vries equations. Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000). Philadelphia, PA SIAM (2000) 1020-1024. | Zbl | MR
[16] , Controllability and stabilization of a canal with wave generators. SIAM J. Control Optim. 38 (2000) 711-735. | Zbl | MR
[17] , Controllability and stabilization of liquid vibration in a container during transportation. (Preprint.)
[18] and, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Automat. Control 47 (2002) 594-609. | MR
[19] , Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33-55, http://www.edpsciences.org/cocv | Zbl | MR | Numdam
[20] , Exact boundary controllability for the linear Korteweg-de Vries equation - a numerical study. ESAIM Proc. 4 (1998) 255-267, http://www.edpsciences.org/proc | Zbl
[21] , Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line. SIAM J. Control Optim. 39 (2000) 331-351. | Zbl | MR
[22] and, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659-673. | Zbl | MR
[23] and, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643-3672. | Zbl | MR
[24] , Compact Sets in the Space . Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65-96. | Zbl | MR
[25] , Linear and nonlinear waves. A Wiley-Interscience publication, Wiley, New York (1999) reprint of the 1974 original. | Zbl | MR
[26] , Nonlinear functional analysis and its applications, Part 1. Springer-Verlag, New York (1986). | Zbl | MR
[27] , Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optim. 37 (1999) 543-565. | Zbl | MR
Cité par Sources :





