We consider the pseudo--laplacian, an anisotropic version of the -laplacian operator for . We study relevant properties of its first eigenfunction for finite and the limit problem as .
Keywords: eigenvalue, anisotropic, pseudo-Laplace, viscosity solution, minimal Lipschitz extension, concavity, symmetry, convex rearrangement
@article{COCV_2004__10_1_28_0,
author = {Belloni, Marino and Kawohl, Bernd},
title = {The pseudo-$p${-Laplace} eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {28--52},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {1},
doi = {10.1051/cocv:2003035},
mrnumber = {2084254},
zbl = {1092.35074},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003035/}
}
TY - JOUR
AU - Belloni, Marino
AU - Kawohl, Bernd
TI - The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
SP - 28
EP - 52
VL - 10
IS - 1
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv:2003035/
DO - 10.1051/cocv:2003035
LA - en
ID - COCV_2004__10_1_28_0
ER -
%0 Journal Article
%A Belloni, Marino
%A Kawohl, Bernd
%T The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 28-52
%V 10
%N 1
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2003035/
%R 10.1051/cocv:2003035
%G en
%F COCV_2004__10_1_28_0
Belloni, Marino; Kawohl, Bernd. The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 28-52. doi: 10.1051/cocv:2003035
[1] and Yin Xi Huang, A Picone's identity for the -Laplacian and applications. Nonlin. Anal. TMA 32 (1998) 819-830. | Zbl
[2] ,, and, Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 275-293. | Zbl | MR | Numdam
[3] , Simplicité et isolation de la première valeur propre du -laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 725-728. | Zbl | MR
[4] , and, Sur le spectre d'un opérateur quasilininéaire elliptique “dégénéré”. Proyecciones 19 (2000) 227-248.
[5] , Extension of functions satisfying Lipschitz conditions. Ark. Math. 6 (1967) 551-561. | Zbl | MR
[6] , On the partial differential equation . Ark. Math. 7 (1968) 395-425. | Zbl | MR
[7] , Remarks on uniqueness results of the first eigenvalue of the -Laplacian. Ann. Fac. Sci. Toulouse 9 (1988) 65-75. | Zbl | MR | Numdam
[8] and, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Partial Differential Equations 26 (2001) 2323-2337. | Zbl | MR
[9] and, A direct uniqueness proof for equations involving the -Laplace operator. Manuscripta Math. 109 (2002) 229-231. | Zbl | MR
[10] , and, Limits as of and related extremal problems. Rend. Sem. Mat., Fasciolo Speciale Nonlinear PDE's. Univ. Torino (1989) 15-68.
[11] , An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions. Electron. J. Differential Equations 2001 (2001) 1-8. | Zbl | MR
[12] and, Remarks on sublinear problems. Nonlinear Anal. 10 (1986) 55-64. | Zbl | MR
[13] , and, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001) 123-139. | Zbl | MR
[14] , and, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. | Zbl
[15] , and, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33 (1991) 749-786. | Zbl | MR
[16] and, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 521-524. | Zbl | MR
[17] , local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. TMA 7 (1983) 827-850. | Zbl | MR
[18] , A half-linear second order differential equation. Qualitative theory of differential equations, (Szeged 1979). Colloq. Math. Soc. János Bolyai 30 (1981) 153-180. | Zbl | MR
[19] , and, Limit as of -Laplace eigenvalue problems and inequality of the Poincaré type. Differ. Integral Equations 12 (1999) 183-206. | Zbl | MR
[20] and, On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31-46. | Zbl | MR
[21] and, Elliptic Partial Differential Equations of second Order. Springer Verlag, Berlin-Heidelberg-New York (1977). | Zbl | MR
[22] and, On fully nonlinear pdes derived from variational problems of -norms. SIAM J. Math. Anal. 33 (2001) 545-569. | Zbl | MR
[23] , Behaviour in the limit, as , of minimizers of functionals involving -Dirichlet integrals. SIAM J. Math. Anal. 27 (1996) 341-360. | Zbl | MR
[24] , Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. | Zbl | MR
[25] , Personal Communications.
[26] , and, The -eigenvalue problem. Arch. Rational Mech. Anal. 148 (1999) 89-105. | Zbl | MR
[27] , Rearrangements and convexity of level sets in PDE. Springer, Lecture Notes in Math. 1150 (1985). | Zbl | MR
[28] , A family of torsional creep problems. J. Reine Angew. Math. 410 (1990) 1-22. | Zbl | MR
[29] , Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dynam. Systems 6 (2000) 683-690. | MR
[30] and, Viscosity solutions for degenerate and nonmonotone elliptic equations, edited by B. da Vega, A. Sequeira and J. Videman. Plenum Press, New York & London, Appl. Nonlinear Anal. (1999) 185-210. | Zbl | MR
[31] and, Linear and quasilinear equations of elliptic type,Second edition, revised. Izdat. “Nauka” Moscow (1973). English translation by Academic Press.
[32] , Gradient estimates for a new class of degenerate elliptic and parabolic equations. Ann. Scuola Normale Superiore Pisa Ser. IV 21 (1994) 497-522. | Zbl | MR | Numdam
[33] , A nonlinear eigenvalue problem. Rocky Mountain J. 23 (1993) 281-288. | Zbl | MR
[34] , On the equation div . Proc. Amer. Math. Soc. 109 (1990) 157-164 . | Zbl | MR
[35] , Addendum to “On the equation div ”. Proc. Amer. Math. Soc. 116 (1992) 583-584. | Zbl
[36] , Some remarkable sine and cosine functions. Ricerche Mat. 44 (1995) 269-290. | Zbl | MR
[37] , Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969). | Zbl | MR
[38] and, Singular degenerate parabolic equations with applications to the -Laplace diffusion equation. Comm. Partial Differential Equations 22 (1997) 381-411. | Zbl | MR
[39] , Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal. 76 (1988) 140-159. | Zbl | MR
[40] , Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Scuola Normale Superiore Pisa 14 (1987) 404-421. | Zbl | MR | Numdam
[41] , Personal Communication, letter dated Oct. 15, 2001
[42] , Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984) 126-150. | Zbl | MR
[43] , On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967) 721-747. | Zbl | MR
[44] and, The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations. Vestnik Leningrad Univ. Math. 16 (1984) 263-270. | Zbl
[45] , Sur la résolutions des problèmes aux limites pour des équations paraboliques quasi-linèaires d'ordre quelconque. Mat. Sbornik 59 (1962) 289-325.
[46] , Quasilinear strongly elliptic systems of differential equations in divergence form. Trans. Moscow. Math. Soc. 12 (1963) 140-208; Translation from Tr. Mosk. Mat. Obs. 12 (1963) 125-184. | Zbl | MR
Cité par Sources :





