If a second order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly non monotone damping term which is effective in a non negligible sub-region for at least one sign of the velocity, all solutions of the perturbed system converge weakly to 0 as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble.
Keywords: weak stabilization, semilinear, wave equations
@article{COCV_2001__6__553_0,
author = {Haraux, Alain},
title = {Remarks on weak stabilization of semilinear wave equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {553--560},
year = {2001},
publisher = {EDP Sciences},
volume = {6},
mrnumber = {1849416},
zbl = {0988.35029},
language = {en},
url = {https://www.numdam.org/item/COCV_2001__6__553_0/}
}
Haraux, Alain. Remarks on weak stabilization of semilinear wave equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 553-560. https://www.numdam.org/item/COCV_2001__6__553_0/
[1] and, Abstract almost periodic functions and functional equations. Van Nostrand, New-York (1971). | Zbl | MR
[2] and, Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5 (1979) 169-179. | Zbl | MR
[3] , Sur les solutions bornées et presque périodiques des équations et inéquations d'évolution. Ann. Math. Pura Appl. 93 (1972) 1-79. | Zbl
[4] and, Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 449-452. | Zbl | MR
[5] and, Oscillatory phenomena associated to semilinear wave equations in one spatial dimension. Trans. Amer. Math. Soc. 300 (1987) 207-233. | Zbl | MR
[6] and, Some oscillatory properties of the wave equation in several space dimensions. J. Funct. Anal. 76 (1988) 87-109. | Zbl | MR
[7] , and, Une équation des ondes complètement intégrable avec non-linéarité homogène de degré 3. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 237-241. | Zbl | MR
[8] , and, A class of nonlinear completely integrable abstract wave equations. J. Dynam. Differential Equations 5 (1993) 129-154. | Zbl | MR
[9] , and, Detailed asymptotics for a convex hamiltonian system with two degrees of freedom. J. Dynam. Differential Equations 5 (1993) 155-187. | Zbl | MR
[10] and, Stabilization of second order evolution equations by unbounded nonlinear feedbacks. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 485-515. | Zbl | MR | Numdam
[11] , Comportement à l'infini pour une équation des ondes non linéaire dissipative. C. R. Acad. Sci. Paris Sér. I Math. 287 (1978) 507-509. | Zbl
[12] , Comportement à l'infini pour certains systèmes dissipatifs non linéaires. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 213-234. | Zbl
[13] , Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differential Equations 59 (1985) 145-154. | Zbl | MR
[14] and, Oscillations of anharmonic Fourier series and the wave equation. Rev. Mat. Iberoamericana 1 (1985) 57-77. | Zbl | MR
[15] , Semi-linear hyperbolic problems in bounded domains, Mathematical Reports Vol. 3, Part 1 , edited by J. Dieudonné. Harwood Academic Publishers, Gordon & Breach (1987). | Zbl | MR
[16] , Systèmes dynamiques dissipatifs et applications, R.M.A. 17, edited by Ph. Ciarlet and J.L. Lions. Masson, Paris (1990). | Zbl | MR
[17] , Strong oscillatory behavior of solutions to some second order evolution equations, Publication du Laboratoire d'Analyse Numérique 94033, 10 p.
[18] and, Almost periodic functions and differential equations. Cambridge University Press, Cambridge (1982). | Zbl | MR
[19] , Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Ser. A 113 (1989) 87-97. | Zbl | MR
[20] , Weak asymptotic stability of second order evolution equations by nonlinear and nonmonotone feedbacks. SIAM J. Math. Anal. 30 (1998) 140-154. | Zbl | MR
[21] , Weak asymptotic decay for a wave equation with weak nonmonotone damping, 17p (to appear).
[22] , Compactness of trajectories of dynamical systems in infinite dimensional spaces. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 19-34. | Zbl | MR






