@article{COCV_2000__5__539_0,
author = {Braides, Andrea and Fonseca, Irene and Leoni, Giovanni},
title = {A-quasiconvexity : relaxation and homogenization},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {539--577},
year = {2000},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1799330},
zbl = {0971.35010},
language = {en},
url = {https://www.numdam.org/item/COCV_2000__5__539_0/}
}
TY - JOUR AU - Braides, Andrea AU - Fonseca, Irene AU - Leoni, Giovanni TI - A-quasiconvexity : relaxation and homogenization JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 539 EP - 577 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2000__5__539_0/ LA - en ID - COCV_2000__5__539_0 ER -
%0 Journal Article %A Braides, Andrea %A Fonseca, Irene %A Leoni, Giovanni %T A-quasiconvexity : relaxation and homogenization %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 539-577 %V 5 %I EDP Sciences %U https://www.numdam.org/item/COCV_2000__5__539_0/ %G en %F COCV_2000__5__539_0
Braides, Andrea; Fonseca, Irene; Leoni, Giovanni. A-quasiconvexity : relaxation and homogenization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 539-577. https://www.numdam.org/item/COCV_2000__5__539_0/
[1] and , Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 ( 1984) 125 -145. | Zbl | MR
[2] and , Relaxation of quasi-convex integrals of arbitrary order. Proc. Roy. Soc. Edinburgh Sect. A 124 ( 1994) 927-946. | Zbl | MR
[3] , and , Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 ( 1991) 269-323. | Zbl | MR
[4] , A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22 ( 1984) 570-598. | Zbl | MR
[5] , A version of the fundamental theorem for Young measures, in PDE's and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag, Berlin, Lecture Notes in Phys. 344 ( 1989) 207-215. | Zbl | MR
[6] and , Remarks on Chacon's biting lemma. Proc. Amer. Math. Soc. 107 ( 1989) 655-663. | Zbl | MR
[7] and , Intégrands normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 ( 1973) 129-184. | Zbl | MR | Numdam
[8] , A homogenization theorem for weakly almost periodic functionals, Rend. Accad. Naz. Sci. XL Mem. Sci. Fis. Natur. (5) 104 ( 1986) 261-281. | Zbl | MR
[9] , Relaxation of functionals with constraints on the divergence. Ann. Univ. Ferrara Ser. VII (N.S.) 33 ( 1987) 157-177. | Zbl | MR
[10] and , Homogenization of Multiple Integrals. Clarendon Press, Oxford ( 1998). | Zbl | MR
[11] , and , Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 ( 1996) 297-356. | Zbl | MR
[12] , Semicontinuity, relaxation and integral epresentation problems in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 ( 1989). | Zbl
[13] , Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin ( 1989). | Zbl | MR
[14] , Weak Continuity and Weak Lower Semicontinuity for Nonlinear Functionals. Springer-Verlag, Berlin, Lecture Notes in Math. 922 ( 1982). | Zbl | MR
[15] , An Introduction to Γ-Convergence. Birkhäuser, Boston ( 1993). | Zbl | MR
[16] , and (private communication).
[17] , Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 ( 1993) 99-143. | Zbl | MR
[18] , The lower quasiconvex envelope of the stored energy function for an elastic crystal. J. Math. Pures Appl. 67 ( 1988) 175-195. | Zbl | MR
[19] , , and (in preparation).
[20] and , Quasiconvex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 ( 1992) 1081-1098. | Zbl | MR
[21] and , Relaxation of quasiconvex functionals in BV(Ω, ℝp) for integrands f (x, u, ∆u). Arch. Rational Mech. Anal. 123 ( 1993) 1-49. | Zbl | MR
[22] and , A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 ( 1999) 1355-1390. | Zbl | MR
[23] , Quasi-convessitá e semicontinuitá per integrali di ordine superiore. Ricerche Mat. 29 ( 1980) 307-323. | Zbl
[24] and , Regularity results for some classes of higher order non linear elliptic systems. J. reine angew. Math. 311/312 ( 1979) 145-169. | Zbl | MR
[25] and , Lower semicontinuity for quasiconvex integrals of higher order. NoDEA Nonlinear Differential Equations Appl. 6 ( 1999) 227-246. | Zbl | MR
[26] , Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute, Technical University of Denmark, Mat-Report No. 1994-34 ( 1994).
[27] , Approximation of quasiconvex functions and semicontinuity of multiple integrals. Manuscripta Math. 51 ( 1985) 1-28. | Zbl | MR
[28] and , Semicontinuity problems in the Calculus of Variations. Nonlinear Anal. 4 ( 1980) 241-257. | Zbl | MR
[29] , Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 ( 1965) 125-149. | Zbl | MR
[30] , Multiple Integrals in the calculus of Variations. Springer-Verlag, Berlin ( 1966). | Zbl | MR
[31] , Variational models for microstructures and phase transitions, in Calculus of Variations and Geometric Evolution Problems, edited by S. Hildebrant et al. Springer-Verlag, Berlin, Lecture Notes in Math. 1713 ( 1999) 85-210. | Zbl | MR
[32] , Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sw. (4) 8 ( 1981) 68-102. | Zbl | MR | Numdam
[33] , Parametrized Measures and Variational Principles. Birkhäuser, Boston ( 1997). | Zbl | MR
[34] , Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, edited by R. Knops. Longman, Harlow, Pitman Res. Notes Math. Ser. 39 ( 1979) 136-212. | Zbl | MR
[35] , The compensated compactness method applied to systems of conservation laws, in Systems of Nonlinear Partial Differential Eq., edited by J.M. Ball. Riedel ( 1983). | Zbl | MR
[36] , Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer-Verlag, Berlin, Lectures Notes in Phys. 195 ( 1984) 384-412. | Zbl | MR
[37] , H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 ( 1990) 193-230. | Zbl | MR
[38] , On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures, in Developments in Partial Differential Equations and Applications to Mathematical Physics, edited by Buttazzo, Galdi and Zanghirati. Plenum, New York ( 1991). | Zbl | MR
[39] , Some remarks on separately convex functions, in Microstructure and Phase Transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J.L. Ericksen. Springer-Verlag, IMA J. Math. Appl. 54 ( 1993) 191-204. | Zbl | MR
[40] , Lectures on Calculus of Variations and Optimal Control Theory. W.B. Saunders ( 1969). | Zbl | MR






