@article{COCV_2000__5__425_0,
author = {Manservisi, Sandro and Heusermann, Knut},
title = {On some optimal control problems for the heat radiative transfer equation},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {425--444},
year = {2000},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1778394},
zbl = {0952.49035},
language = {en},
url = {https://www.numdam.org/item/COCV_2000__5__425_0/}
}
TY - JOUR AU - Manservisi, Sandro AU - Heusermann, Knut TI - On some optimal control problems for the heat radiative transfer equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 425 EP - 444 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2000__5__425_0/ LA - en ID - COCV_2000__5__425_0 ER -
%0 Journal Article %A Manservisi, Sandro %A Heusermann, Knut %T On some optimal control problems for the heat radiative transfer equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 425-444 %V 5 %I EDP Sciences %U https://www.numdam.org/item/COCV_2000__5__425_0/ %G en %F COCV_2000__5__425_0
Manservisi, Sandro; Heusermann, Knut. On some optimal control problems for the heat radiative transfer equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 425-444. https://www.numdam.org/item/COCV_2000__5__425_0/
[1] and , On some control problems in fluid mechanics. Theoret. Computational Fluid Dynamics 1 ( 1990) 303-326. | Zbl
[2] , Sobolev Spaces. Academic Press, New York ( 1975). | Zbl | MR
[3] , and , Optimal Control. Consultants Bureau, New York ( 1987). | Zbl | MR
[4] , The finite element method with Lagrangian multipliers. Numer. Math. 16 ( 1973) 179-192. | Zbl | MR
[5] and , An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). | Zbl
[6] , and , Consistent approximations for an optimal design problem. Report 98005 Labotatoire d'analyse numérique, Paris, France ( 1998).
[7] , Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge ( 1989). | Zbl | MR
[8] , The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam ( 1978). | Zbl | MR
[9] and , Numerical methods for unconstrained optimisation and non-linear equations. Prentice-Hall Inc., New Jersey ( 1983). | Zbl
[10] and , The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, New York ( 1986). | Zbl | MR
[11] and , Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. (to appear). | Zbl | MR
[12] and , The velocity tracking problem for for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. (to appear). | Zbl | MR
[13] and , Finite Element Approximation for Optimal Shape Design. Wiley, Chichester ( 1988). | Zbl | MR
[14] and , Optimal design for heat radiative transfer systems. Comput. Methods Appl. Mech. Engrg. (to appear).
[15] and , Fundamentals of Heat and Mass Transfer. Wiley, New York ( 1990).
[16] , Radiative heat transfer. McGraw-Hill, New York ( 1993).
[17] , Optimal shape design in fluid mechanics. Thesis, University of Paris ( 1976).
[18] , On optimal design in fluid mechanics. J. Fluid. Mech. 64 ( 1974) 97-110. | Zbl | MR
[19] , Optimal shape design for elliptic systems. Springer, Berlin ( 1984). | Zbl | MR
[20] , Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations ( 1994) http://ejde.math.swt.edu/mono-toc.html | Zbl | MR
[21] and , Introduction to shape optimisation: Shape sensitivity analysis. Springer, Berlin ( 1992). | Zbl
[22] , Stefan-Boltzmann radiation on Non-convex Surfaces. Math. Methods Appl. Sci. 20 ( 1997) 47-57. | Zbl | MR
[23] , Finite Element Approximations for a Beat Radiation Problem. Report 7/ 1995, Dept. of Mathematics, University of Jyväskylä ( 1995).
[24] , Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester ( 1986). | Zbl | MR





