@article{COCV_2000__5__313_0,
author = {Teel, Andrew R. and Praly, Laurent},
title = {A smooth {Lyapunov} function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {313--367},
year = {2000},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1765429},
zbl = {0953.34042},
language = {en},
url = {https://www.numdam.org/item/COCV_2000__5__313_0/}
}
TY - JOUR
AU - Teel, Andrew R.
AU - Praly, Laurent
TI - A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
SP - 313
EP - 367
VL - 5
PB - EDP Sciences
UR - https://www.numdam.org/item/COCV_2000__5__313_0/
LA - en
ID - COCV_2000__5__313_0
ER -
%0 Journal Article
%A Teel, Andrew R.
%A Praly, Laurent
%T A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2000
%P 313-367
%V 5
%I EDP Sciences
%U https://www.numdam.org/item/COCV_2000__5__313_0/
%G en
%F COCV_2000__5__313_0
Teel, Andrew R.; Praly, Laurent. A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 313-367. https://www.numdam.org/item/COCV_2000__5__313_0/
[1] and , A separation principle for the control of a class of nonlinear systems, in Proc. of the 37th IEEE Conference on Decision and Control Tampa, FL ( 1998) 855-860.
[2] and , Differential Inclusions: Set-valued Maps and Viability Theory. Springer-Verlag, New York ( 1984). | Zbl | MR
[3] and , Set-valued Analysis. Birkhauser, Boston ( 1990). | Zbl | MR
[4] and , Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 ( 1998) 101-128. | Zbl | MR
[5] and , On the existence of a function of Lyapunov in the case of asymptotic stability in the large. Prikl. Mat. Mekh. 18 ( 1954) 345-350. | Zbl | MR
[6] , and , Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 ( 1998) 69-114. | Zbl | MR
[7] , , and , Nonsmooth Analysis and Control Theory. Springer ( 1998). | Zbl | MR
[8] , and , Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Canad. J. Math. 45 ( 1993) 1167-1183. | Zbl | MR
[9] and , A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Trans. Automat. Control 44 ( 1999) 751-764. | Zbl | MR
[10] , Multivalued Differential Equations. Walter de Gruyter, Berlin ( 1992). | Zbl | MR
[11] , On certain questions in the theory of optimal control. SIAM J. Control 1 ( 1962) 76-84. | Zbl | MR
[12] , Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers ( 1988). | Zbl | MR
[13] , Stability of Motion. Springer-Verlag ( 1967). | Zbl | MR
[14] , Singular perturbations on the infinite interval. Trans. Amer. Math. Soc. 123 ( 1966) 521-535. | Zbl | MR
[15] , On the inversion of Ljapunov's second theorem on stability of motion. Amer. Math. Soc. Trans. Ser. 2 24 ( 1956) 19-77. | Zbl | EuDML
[16] , and , Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc. ( 1989). | Zbl | MR
[17] and , On Massera type converse theorem in terms of two different measures. Bull. U.M.I. 13 ( 1976) 293-301. | Zbl | MR
[18] , and , A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 ( 1996) 124-160. | Zbl | MR
[19] , The general problem of the stability of motion. Math. Soc. of Kharkov, 1892 (Russian). [English Translation: Internat. J. Control 55 ( 1992) 531-773]. | Zbl | MR
[20] , On the question of the reciprocal of Lyapunov's theorem on asymptotic stability. Prikl. Mat. Mekh. 18 ( 1954) 129-138. | Zbl
[21] , On Liapounoff's conditions of stability. Ann. of Math. 50 ( 1949) 705-721. | Zbl | MR
[22] , Contributions to stability theory. Ann. of Math. 64 ( 1956) 182-206. (Erratum: Ann. of Math. 68 ( 1958) 202.) | Zbl | MR
[23] , Design of stable control systems subject to parametric perturbations. Avtomat. i Telemekh. 10 ( 1978) 5-16. | Zbl | MR
[24] and , Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I. Avtomat. i Telemekh. ( 1986) 63-73. | Zbl | MR
[25] and , Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II. Avtomat. i Telemekh. ( 1986) 5-14. | Zbl | MR
[26] and , Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 ( 1989) 59-64. | Zbl | MR
[27] , Stability of processes with respect to two measures. Prikl. Mat. Mekh. ( 1960) 988-1001. | Zbl
[28] , Theory of Functions of a Real Variable. Vol. 1. Frederick Ungar Publishing Co. ( 1974). | Zbl | MR
[29] , Discontinuous feedback and universal adaptive stabilization, in Control of Uncertain Systems, edited by D. Hinrichsen and B. Martensson. Birkhauser, Boston ( 1990) 245-258. | Zbl | MR
[30] , Comments on integral variants of ISS. Systems Control Lett. 34 ( 1998) 93-100. | Zbl | MR
[31] and , A notion of input to output stability, in Proc. European Control Conf. Brussels ( 1997), Paper WE-E A2, CD-ROM file ECC958.pdf.
[32] and , Notions of input to output stability. Systems Control Lett. 38 ( 1999) 235-248. | Zbl | MR
[33] and , Lyapunov characterizations of input to output stability. SIAM J. Control Optim. (to appear). | Zbl | MR
[34] and , Dynamical Systems and Numerical Analysis. Cambridge University Press, New York ( 1996). | Zbl | MR
[35] and , Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 ( 1995) 1443-1488. | Zbl | MR
[36] , A Lyapunov description of stability in control systems. Nonlinear Anal. 13 ( 1989) 63-74. | Zbl | MR
[37] and , Prolongations and stability analysis via Lyapunov functions of dynamical polysystems. Math. Systems Theory 20 ( 1987) 215-233. | Zbl | MR
[38] , and , Lyapunov functions and stability of dynamical polysystems. Math. Systems Theory 19 ( 1987) 333-354. | Zbl | MR
[39] , Stability and stabilization of motion: Research approaches, results, distinctive characteristics. Avtomat. i Telemekh. ( 1993) 3-62. | Zbl | MR
[40] , Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc. 139 ( 1969) 413-428. | Zbl | MR
[41] , Stability Theory by Lyapunov's Second Method. The Mathematical Society of Japan ( 1966). | Zbl | MR
[42] , Functional Analysis, 2nd Edition. Springer Verlag, New York ( 1968). | Zbl | MR






