@article{COCV_2000__5__279_0,
author = {Blot, Jo\"el and Hayek, Na{\"\i}la},
title = {Sufficient conditions for infinite-horizon calculus of variations problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {279--292},
year = {2000},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1765427},
zbl = {0957.49016},
language = {en},
url = {https://www.numdam.org/item/COCV_2000__5__279_0/}
}
TY - JOUR AU - Blot, Joël AU - Hayek, Naïla TI - Sufficient conditions for infinite-horizon calculus of variations problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 279 EP - 292 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2000__5__279_0/ LA - en ID - COCV_2000__5__279_0 ER -
%0 Journal Article %A Blot, Joël %A Hayek, Naïla %T Sufficient conditions for infinite-horizon calculus of variations problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 279-292 %V 5 %I EDP Sciences %U https://www.numdam.org/item/COCV_2000__5__279_0/ %G en %F COCV_2000__5__279_0
Blot, Joël; Hayek, Naïla. Sufficient conditions for infinite-horizon calculus of variations problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 279-292. https://www.numdam.org/item/COCV_2000__5__279_0/
[1] , and , Commande optimale, French translation. Mir, Moscow ( 1982). | MR
[2] , Applications of Control Theory to Economic Growth. Math, of the Decision Sciences, edited by G.B. Dantzig and A.F. Veinott Jr. ( 1968). | Zbl | MR
[3] and , Optimality in Infinite-Horizon Problems under Signs Conditions. J. Optim. Theory Appl. (to appear). | Zbl
[4] and , Second-Order Necessary Conditions for the Infinite-Horizon Variational Problems. Math. Oper. Res. 21 ( 1996) 979-990. | Zbl | MR
[5] and , First-Order Necessary Conditions for the Infinite-Horizon Variational Problems. J. Optim. Theory Appl. 88 ( 1996) 339-364. | Zbl | MR
[6] , Fonctions d'une variable réelle. Hermann, Paris ( 1976). | MR
[7] , and , Infinite Horizon Optimal Control, Deterministic and Stochastic Systems, Second Edition. Springer-Verlag, Berlin ( 1991). | Zbl
[8] , Calcul Différentiel, Hermann, Paris ( 1967). | Zbl | MR
[9] , Optimization Theory and Applications: Problems with Ordinary Differential Equations. Springer-Verlag, New York ( 1983). | Zbl | MR
[10] , Topology. Allyn and Bacon, Boston ( 1966). | Zbl | MR
[11] , Calculus of Variations, with Applications. Dover Pub. Inc., New York ( 1985). | Zbl | MR
[12] and , Deterministic and Stochastic Optimal Control. Springer-Verlag, New York ( 1975). | Zbl | MR
[13] and , Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York ( 1993). | Zbl | MR
[14] and , Calculus of Variations ISpringer-Verlag, Berlin ( 1996). | Zbl
[15] , Éléments de topologie algébrique. Hermann, Paris ( 1971). | Zbl | MR
[16] , and , A Survey of the Maximum Principles for Optimal Control Problems with State Constraints. SIAM Rev. 37 ( 1995) 181-218. | Zbl | MR
[17] , Calculus of Variations and Optimal Control Theory. Robert E. Krieger Publ. Comp., Huntington, N.Y. ( 1980). | Zbl | MR
[18] and , A Sufficiency Theorem for Optimal Control. J. Optim. Theory Appl. VIII ( 1971) 169-174. | Zbl | MR
[19] and , Optimal Control Theory and Static Optimization in Economics. Cambridge University Press, New York ( 1992). | MR
[20] , Sufficient Conditions for the Optimal Control of Nonlinear Systems. SIAM J. Control IV ( 1966) 139-152. | Zbl | MR
[21] , Sufficient Conditions in the Calculus of Variations and in the Theory of Optimal Control. Proc. Amer. Math. Soc. 39 ( 1973) 535-539. | Zbl | MR
[22] , , and , Théorie Mathématique des Processus Optimaux, French Edition. Mir, Moscow ( 1974).
[23] , Introduction to the Calculus of Variations. McGraw-Hill, New York ( 1969).
[24] , Macroeconomic Theory, Second Edition. Academic Press, New York ( 1986). | Zbl | MR
[25] and , Sufficient Conditions in Optimal Control Theory, Internat. Econom. Rev. 18 ( 1977). | Zbl | MR
[26] , Cours d'Analyse de l'École Polytechnique, Tome 1. Hermann, Paris ( 1967).
[27] , Topologie Générale et Analyse Fonctionnelle. Hermann, Paris ( 1970). | Zbl | MR
[28] , Sufficient Conditions for Nonconvex Control Problems with State Constraints. J. Optim. Theory Appl. 62 ( 1989) 289-310. | Zbl | MR
[29] , Variational Calculus with Elementary Convexity. Springer-Verlag, New York ( 1983). | Zbl | MR
[30] , First and Second Order Sufficient Conditions for Optimal Control and Calculus of Variations. Appl. Math. Optim. 11 ( 1984) 209-226. | Zbl | MR
[31] , Existence and Structure of Optimal Solutions of Variational Problems, Recent Developments in Optimization Theory and Nonlinear Analysis, edited by Y. Censor and S. Reich. Amer. Math. Soc. Providence, Rhode Island ( 1997) 247-278. | Zbl | MR






