@article{COCV_2000__5__259_0,
author = {Agoshkov, Valeri I. and Bardos, Claude},
title = {Optimal control approach in inverse radiative transfer problems : the problem on boundary function},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {259--278},
year = {2000},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1765426},
zbl = {0957.49018},
language = {en},
url = {https://www.numdam.org/item/COCV_2000__5__259_0/}
}
TY - JOUR AU - Agoshkov, Valeri I. AU - Bardos, Claude TI - Optimal control approach in inverse radiative transfer problems : the problem on boundary function JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 259 EP - 278 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2000__5__259_0/ LA - en ID - COCV_2000__5__259_0 ER -
%0 Journal Article %A Agoshkov, Valeri I. %A Bardos, Claude %T Optimal control approach in inverse radiative transfer problems : the problem on boundary function %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 259-278 %V 5 %I EDP Sciences %U https://www.numdam.org/item/COCV_2000__5__259_0/ %G en %F COCV_2000__5__259_0
Agoshkov, Valeri I.; Bardos, Claude. Optimal control approach in inverse radiative transfer problems : the problem on boundary function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 259-278. https://www.numdam.org/item/COCV_2000__5__259_0/
[1] , Scattering and absorption of light in planetary atmospheres. Uchen. Zap. TsAGI 82 ( 1941), in Russian.
[2] , Radiative Transfer. New York ( 1960). | Zbl | MR
[3] , Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris ( 1968). | Zbl | MR
[4] and , The Poincaré-Steklov Operators and their Applications in Analysis. Dept. of Numerical Math. of the USSR Academy of Sciences, Moscow ( 1983), in Russian. | Zbl | MR
[5] , Generalized solutions of transport equations and their smoothness properties. Nauka, Moscow ( 1988), in Russian. | MR
[6] , Reflection operators and domain decomposition methods in transport theory problems. Sov. J. Numer. Anal. Math. Modelling 2 ( 1987) 325-347. | Zbl | MR
[7] , On the existence of traces of functions in spaces used in transport theory problems. Dokl. Akad. Nauk SSSR 288 ( 1986) 265-269, in Russian. | Zbl | MR
[8] , Mathematical problems of monenergetic particle transport theory. Trudy Mat. Inst. Steklov 61 ( 1961), in Russian. | MR
[9] , Design of Nuclear Reactors. Atomizdat, Moscow ( 1961), in Russian.
[10] , Light Scattering in Planetary Atmospheres. Pergamon Press, Oxford, U.K. ( 1973).
[11] and , Reflection Operators and Contemporary Applications to Radiative Transfer. Appl. Math. Comput. 80 ( 1995) 1-19. | Zbl | MR
[12] , Domain decomposition methods in problems of hydrodynamics. I. Problem plain circulation in ocean. Moscow: Department of Numerical Mathematics, Preprint No. 96 ( 1985) 12, in Russian. | Zbl | MR
[13] , Domain decomposition methods and perturbation methods for solving some time dependent problems of fluid dynamics, in Proc. of First International Interdisciplinary Conference. Olympia-91 ( 1991). | Zbl
[14] , Control theory approaches in: data assimilation processes, inverse problems, and hydrodynamics. Computer Mathematics and its Applications, HMS/CMA 1 ( 1994) 21-39. | Zbl | MR
[15] Ill-posed problems in natural Sciences, edited by A.N. Tikhonov. Moscow, Russia - VSP, Netherlands ( 1992). | MR
[16] , Inverse problems for the nonstationary kinetic transport equation. In [15]. | Zbl
[17] , and , Inverse problems in mathematical physics. In [15]. | Zbl
[18] , New methods and results in multidimensional inverse problems for kinetic equations. In [15]. | Zbl
[19] , Introduction to the Theory of Fourier Integral. New York ( 1937). | JFM
[20] , Mathematical approachfor the inverse problem in radiative media ( 1986), not published.
[21] , Inverse problem in transport theory. Phys. Fluids 16 ( 1973) 16-7-1611. | MR
[22] and , Reverse scattering problem for a transport equation with respect to directions.Preprint, Institute of Mathematics, Academy Sciences of the Ukrainian SSR ( 1980). | MR
[23] and , Numerical test of an inverse method for estimating single-scattering parameters from pulsed multiple-scattering experiments. J. Opt. Soc. Amer. A. 2 ( 1985).
[24] , Recent Development in inverse scattering transport method. Trans. Theory Statist. Phys. 13 ( 1984) 15-28. | MR
[25] , and , Diffusion approximation and the computation of critical size. Trans. Amer. Math. Soc. 284 ( 1986) 617-649. | Zbl | MR
[26] , and , Different aspect of the Milne problem. Trans. Theory Statist. Phys. 16 ( 1987) 561-585. | Zbl | MR
[27] , Integral renection operators and solvability of inverse transport problem, in Integral equations in applied modelling. Kiev: Inst. of Electrodynamics, Academy of Sciences of Ukraine, Vol. 2 ( 1986) 243-244, in Russian.
[28] and , Inverse radiative problems: The problem on boundary function. CMLA, ENS de Cachan, Preprint No. 9801 ( 1998).
[29] and , Inverse radiative problems: The problem on the right-hand-side function. CMLA, ENS de Cachan, Preprint No. 9802 ( 1998).
[30] and , Optimal control approach in 3D-inverse radiative problem on boundary function (to appear).
[31] , , and , Numerical analysis of iterative algorithms for an inverse boundary transport problem (to appear). | Zbl | MR
[32] and , Optimization methods of solving inverse problems of geoelectric, In [15]. | Zbl
[33] , and , A Classification of Well-Posed Kinetic Layer Problems. Comm. Pure Appl. Math. 41 ( 1988) 409-435. | Zbl | MR
[34] and , Analyse mathématique et calcul numérique pour les sciences et les techniques, CEA. Masson, Tome 9. | Zbl
[35] and , Exact and approximate controllability for distributed parameter systems. Acta Numer. ( 1994) 269-378. | Zbl | MR






