@article{COCV_2000__5__207_0,
author = {Belishev, Mikhail and Glasman, Aleksandr},
title = {Boundary control of the {Maxwell} dynamical system : lack of controllability by topological reasons},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {207--217},
year = {2000},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1750615},
zbl = {1121.93307},
language = {en},
url = {https://www.numdam.org/item/COCV_2000__5__207_0/}
}
TY - JOUR AU - Belishev, Mikhail AU - Glasman, Aleksandr TI - Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 207 EP - 217 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2000__5__207_0/ LA - en ID - COCV_2000__5__207_0 ER -
%0 Journal Article %A Belishev, Mikhail %A Glasman, Aleksandr %T Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 207-217 %V 5 %I EDP Sciences %U https://www.numdam.org/item/COCV_2000__5__207_0/ %G en %F COCV_2000__5__207_0
Belishev, Mikhail; Glasman, Aleksandr. Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 207-217. https://www.numdam.org/item/COCV_2000__5__207_0/
[1] , and , The controllability in the filled domain for the multidimensional wave equation with a singular boundary control J. Math. Sci. 83 ( 1997). | Zbl | MR
[2] , Boundary control in reconstruction of manifolds and metrics(the BC-method). Inverse Problems 13 ( 1997) R1-R45. http://www.iop.org/Journals/ip/. | Zbl | MR
[3] and , Boundary control and inverse problem for the dynamical maxwell system: the recovering of velocity in regular zone. Preprint CMLA ENS Cachan ( 1998) 9814. http://www.cmla.ens-cachan.fr
[4] and , Vizualization of waves in the Maxwell dynamical system(The BC-method). Preprint POMI ( 1997) 22. http://www.pdmi.ras.ru/preprint/1997/ | MR
[5] , , and , On reconstruction of gravity field via external electromagnetic measurements. Preprint PDMI ( 1999) 10.http://www.pdmi.ras.ru/preprint/1999/10-99.ps.gz.
[6] and , On an orthogonal decomposition of the space of square-summable vector- functions and operators of the vector analisys. Proc. Steklov Inst. Math. 59 ( 1960) 5-36, in Russian. | Zbl | MR
[7] and , Les inéquations en mécanique et en physique, Vol. 21 of Travaux et recherches mathématiques. Paris: Dunod. XX ( 1972). | Zbl | MR
[8] , , and , Uniqueness and stability in the Cauchy Problem for Maxwell and elasticity systems. Nonlinear Partial Differential Equations and their applications. College de France Seminar. XIV ( 1999) to appear. | Zbl | MR
[9] , Exact boundary controllability of Maxwell's equations in a general region. SIAM J. Control Optim. 27 ( 1989) 374-388. | Zbl | MR
[10] and , Recent advances in regularity of second-order hyperbolic mixed problems, and applications, K.R.T. Christopher et al., Eds. Jones, editor. Springer-Verlag, Berlin, Dynam. Report. Expositions Dynam. Systems (N.S.) 3 ( 1994) 104-162. | Zbl | MR
[11] , Initial boundary value problems in mathematical physics. Teubner, Stuttgart ( 1972). | Zbl | MR
[12] , The Sobolev spaces. Leningrad, Leningrad State University ( 1985), in Russian. | Zbl | MR
[13] , Controlabilité exacte sur une partie du bord des équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math. 309 ( 1989) 811-815. | Zbl | MR
[14] , Boundary value control theory of the higher-dimensional wave equation. SIAM J. Control Optim. 9 ( 1971) 29-42. | Zbl | MR
[15] , Hodge decomposition. A method for solving boundary value problems. Springer Verlag, Berlin, Lecture Notes in Math. 1607 ( 1995). | Zbl | MR
[16] , Unique continuation for solutions to PDE's; between Hoermander's theorem and Holmgren's theorem. Comm. Partial Differential Equations 20 ( 1995) 855-884. | Zbl | MR
[17] , Exact boundary controllability of a Maxwell problem. SIAM J. Control Optim. (to appear). | Zbl





