@article{COCV_2000__5__157_0,
author = {Anita, Sebastian and Barbu, Viorel},
title = {Null controllability of nonlinear convective heat equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {157--173},
year = {2000},
publisher = {EDP Sciences},
volume = {5},
mrnumber = {1744610},
zbl = {0938.93008},
language = {en},
url = {https://www.numdam.org/item/COCV_2000__5__157_0/}
}
TY - JOUR AU - Anita, Sebastian AU - Barbu, Viorel TI - Null controllability of nonlinear convective heat equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 157 EP - 173 VL - 5 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_2000__5__157_0/ LA - en ID - COCV_2000__5__157_0 ER -
Anita, Sebastian; Barbu, Viorel. Null controllability of nonlinear convective heat equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 157-173. https://www.numdam.org/item/COCV_2000__5__157_0/
[1] , Sobolev Spaces. Academic Press, New York ( 1975). | Zbl | MR
[2] , Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston ( 1993). | Zbl | MR
[3] , Exact controllability of the superlinear heat equation. Appl. Math. Optim., to appear. | Zbl | MR
[4] , , Convexity and Optimization in Banach Spaces. D. Reidel Publ. Company, Dordrecht ( 1986). | Zbl | MR
[5] and , Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures Appl. 62 ( 1983) 73-97. | Zbl | MR
[6] , Nonlinear Functional Analysis. Springer-Verlag, Berlin ( 1985). | Zbl | MR
[7] , and , Approximate controllability of the semilinear heat equation, Proceedings Royal Soc. Edinburgh 125 A ( 1995) 31-61. | Zbl | MR
[8] , Null controllability of the semilinear heat equation. ESAIM Control. Optim. Calc. Var. 2 ( 1997) 87-107. | Zbl | MR | Numdam
[9] and , The cost of approximate controllability for heat equations: The linear case. Adv. Diff. Equations, to appear. | Zbl | MR
[10] and , Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. | Zbl | MR | Numdam
[11] and , Controllability of Evolution Equations. RIM Seoul National University, Korea, Lecture Notes Ser. 34 ( 1996). | Zbl | MR
[12] and , On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, preprint #98 - 46. University of Tokyo, Grade School of Mathematics, Komobo, Tokyo, Japan ( 1998). | MR
[13] , and , Linear and Quasilinear Equations of Paraboic Type. Nauka, Moskow ( 1967). | Zbl
[14] and , Contrôle exact de l'équation de la chaleur. Comm. Partial Differential Equations 30 ( 1995) 335-357. | Zbl | MR
[15] , Controle des systèmes distribués singuliers, MMI 13. Gauthier-Villars ( 1983). | Zbl | MR
[16] and , Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris ( 1968). | Zbl | MR
[17] , Approximate controllability of the semilinear heat équation: boundary control, in Computational Sciences for the 21st Century, M.O. Bristeau et al, Eds. John Wiley & Sons ( 1997) 738-747. | Zbl
[18] , Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Control Cybernet., to appear. | Zbl | MR






