@article{COCV_1999__4__559_0,
author = {Nazaret, Bruno},
title = {Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical {Sobolev} growth},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {559--575},
year = {1999},
publisher = {EDP Sciences},
volume = {4},
mrnumber = {1746167},
zbl = {0930.35051},
language = {en},
url = {https://www.numdam.org/item/COCV_1999__4__559_0/}
}
TY - JOUR AU - Nazaret, Bruno TI - Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 559 EP - 575 VL - 4 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_1999__4__559_0/ LA - en ID - COCV_1999__4__559_0 ER -
%0 Journal Article %A Nazaret, Bruno %T Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 1999 %P 559-575 %V 4 %I EDP Sciences %U https://www.numdam.org/item/COCV_1999__4__559_0/ %G en %F COCV_1999__4__559_0
Nazaret, Bruno. Stability results for some nonlinear elliptic equations involving the $p$-laplacian with critical Sobolev growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 559-575. https://www.numdam.org/item/COCV_1999__4__559_0/
[1] , Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom. 11 ( 1976) 573-598. | Zbl | MR
[2] , Nonlinear Analysis on Manifolds. Monge-Ampere equations, Springer-Verlag ( 1982) (Grundlehren) 252. | Zbl | MR
[3] , Generalized scalar curvature type equations on compact riemaniann manifolds. Preprint of the University of Cergy-Pontoise ( 1997). | MR
[4] and , On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. Adv. in PDE's, to appear. | Zbl | MR
[5] and , On the heat flow for p-harmonic maps with values in S1. Nonlinear Anal. TMA, accepted.
[6] and , Local and global properties of solutions of quasilinear elliptic equations. J. Differential Equations 76 ( 1988) 159-189. | Zbl | MR
[7] and , Quasilinear elliptic equations involving critical Sobolev exponentsNonlinear Analysis, Theory, Methods and Applications 13 ( 1989) 879-902. | Zbl | MR
[8] and , Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth. J. Funct. Anal. 119 ( 1994) 298-318. | Zbl | MR
[9] , Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences 74 ( 1990). | Zbl | MR
[10] , La methode d'isométries-concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de sobolev. Bull. Sci. Math. 116 ( 1992) 35-51. | Zbl | MR
[11] , Sobolev Spaces on Riemannian Manifolds, Springer-Verlag ( 1996) (LNM) 1635. | Zbl | MR
[12] , Solutions nodales pour des équations de type courbure scalaire sur la sphère. Preprint of the University of Cergy-Pontoise ( 1997).
[13] , The concentration-compactness principle in the calculus of variations. The limit case, part I. Revista Matematica Iberoamericana 1 ( 1985) 145-199. | Zbl | MR
[14] , The concentration-compactness principle in the calculus of variations. The limit case, part II. Revista Matematica Iberoamericana 1 ( 1985) 45-116. | Zbl | MR
[15] , Stabilité sous des perturbations visqueuses des solutions d'équations du type p-Laplacien avec exposant critique de Sobolev. Preprint of the University of Cergy-Pontoise (5/98).
[16] . Best constants in Sobolev inequalities. Ann. Mat. Pura Appl. 110 ( 1976) 353-372. | Zbl | MR
[17] , Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 ( 1984) 126-150. | Zbl | MR
[18] , A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 ( 1984) 191-202. | Zbl | MR






