@article{COCV_1999__4__419_0,
author = {Martinez, Patrick},
title = {A new method to obtain decay rate estimates for dissipative systems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {419--444},
year = {1999},
publisher = {EDP Sciences},
volume = {4},
mrnumber = {1693904},
zbl = {0923.35027},
language = {en},
url = {https://www.numdam.org/item/COCV_1999__4__419_0/}
}
TY - JOUR AU - Martinez, Patrick TI - A new method to obtain decay rate estimates for dissipative systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1999 SP - 419 EP - 444 VL - 4 PB - EDP Sciences UR - https://www.numdam.org/item/COCV_1999__4__419_0/ LA - en ID - COCV_1999__4__419_0 ER -
Martinez, Patrick. A new method to obtain decay rate estimates for dissipative systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 419-444. https://www.numdam.org/item/COCV_1999__4__419_0/
[1] , On a quasilinear wave equation with a strong damping. Funkcial. Ekvac. 41 ( 199867-78. | Zbl | MR
[2] , Analysis and control of nonlinear infinite dimensional systems. Academic Press, New York ( 1993). | Zbl | MR
[3] , and , Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 ( 1992) 1024-1065. | Zbl | MR
[4] , Sharp estimates of the energy for the solutions of some dissipative second order evolution equations. Potential Anal. 1 ( 1992) 265-289. | Zbl | MR
[5] , Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures Appl. 58 ( 1979) 249-274. | Zbl | MR
[6] and , Asymptotic behavior of solutions of the one dimensional wave equation with a nonlinear boundary stabilizer. SIAM J. Control Optim. 27 ( 1989) 758-775. | Zbl | MR
[7] , Décroissance de l'énergie pour certaines équations hyperboliques semilinéaires dissipatives. Thèse de 3e cycle, Université Pierre et Marie Curie ( 1984).
[8] , and , Stabilization of second order evolution equations by unbounded nonlinear feedback in. Proc. of the Fifth IFAC Symposium on Control of Distributed Parameter Systems, Perpignan ( 1989) 101-116. | Zbl
[9] and , Decay of solutions of wave equations in a star-shaped domain with non-linear boundary feedback. Asymptotic Analysis 7 ( 1993) 159-177. | Zbl | MR
[10] , Asymptotic behavior of solutions of evolutions equationsNonlinear evolution equations, M.G. Crandall, Ed., Academic Press, New-York ( 1978) 103-123. | Zbl | MR
[11] , Comportement à l'infini pour une équation des ondes non linéaire dissipative. C. R. Acad. Sci. Paris Sér. A 287 ( 1978507-509. | Zbl
[12] , Oscillations forcées pour certains systèmes dissipatifs non linéaires. Publication du Laboratoire d'Analyse Numérique No. 78010, Université Pierre et Marie Curie, Paris ( 1978).
[13] and , Decay estimates for some semilinear damped hyperbolic problems. Arch. Rat. Mech. Anal. 100 ( 1988) 191-206. | Zbl | MR
[14] and , Global stabilization of a dynamic Von Karman plate with nonlinear boundary feedback. Appl. Math. Optim. 31 ( 1995) 57-84. | Zbl | MR
[15] and , Nonlinear boundary stabilization of parallelly connected Kirchhoff plates. Dynamics and Control 6 ( 1996) 263-292. | Zbl | MR
[16] and , A direct method for the boundary stabilization of the wave equation. J. Maths Pures Appl. 69 ( 1990) 33-54. | Zbl | MR
[17] , On the nonlinear boundary stabilization of the wave equation. Chinese Ann. Math. Ser. B. 14 ( 1993153-164. | Zbl | MR
[18] , Exact Controllability and Stabilization RAM: Research in Applied Mathematics. Masson, Paris; John Wiley, Ltd., Chichester ( 1994). | Zbl | MR
[19] , On the decay of solutions of some semilinear hyperbolic problems. Panamer. Math. J. 6 ( 1996) 69-82. | Zbl | MR
[20] , Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differential Equations 50 ( 1983163-182. | Zbl
[21] , Boundary stabilization of thin plates. SIAM Studies in Appl. Math., Philadelphia, 1989. | Zbl | MR
[22] and , Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. J. Diff. Integr. Eq. 6 ( 1993) 507-533. | Zbl | MR
[23] , Uniform stabilizability of a full Von Karman System with nonlinear boundary feedback. SIAM J. Control Optim. 36 ( 1998) 1376-1422. | Zbl | MR
[24] , Boundary stabilization of a 3-dimensional structural acoustic model. J. Math. Pures Appl. 78 ( 1999203-232. | Zbl | MR
[25] , Contrôlabilité exacte et stabilisation de systèmes distribués, Vol. 1, Masson, Paris ( 1988). | Zbl | MR
[26] and , Decay rates for dissipative wave equation, preprint. | MR
[27] , Decay of solutions of the wave equation with a local highly degenerate dissipationAsymptotic Analysis 19 ( 1999) 1-17. | Zbl | MR
[28] , A new method to obtain decay rate estimates for dissipative Systems with localized damping. Rev. Mat. Compl Madrid, to appear. | Zbl | MR
[29] , Asymptotic stability of the bounded or almost periodic solution of the wave equation with a nonlinear dissipative term. J. Math. Anal. Appl. 58 ( 1977) 336-343. | Zbl | MR
[30] , Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305 ( 1996) 403-417. | Zbl | MR
[31] , Stabilization of the wave equation with localized nonlinear damping. J. Differential Equations 145 ( 1998) 502-524. | Zbl | MR
[32] , Optimalité d'estimations d'énergie pour une équation des ondes amortie. C. R. Acad. Sci. Paris Sér. A, to appear. | Zbl
[33] and , Optimality of energy estimates for a damped wave equation with polynomial or non polynomial feedbacks, submitted.
[34] , Stability and decay for a class of nonlinear hyperbolic problems. Asymptotic Analysis 1 ( 19881-28. | Zbl | MR
[35] , Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control and Optim. 28 ( 1990) 466-478. | Zbl | MR





