@article{COCV_1998__3__97_0,
author = {Imanuvilov, O. Yu.},
title = {On exact controllability for the {Navier-Stokes} equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {97--131},
year = {1998},
publisher = {EDP Sciences},
volume = {3},
mrnumber = {1617825},
zbl = {1052.93502},
language = {en},
url = {https://www.numdam.org/item/COCV_1998__3__97_0/}
}
Imanuvilov, O. Yu. On exact controllability for the Navier-Stokes equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 97-131. https://www.numdam.org/item/COCV_1998__3__97_0/
[1] , , : Optimaal Control, Consultants Bureau, New York, 1987. | Zbl | MR
[2] , , : Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. of Dynamical and Control Syst. 2, 1996, n° 4, 449-483. | Zbl | MR
[3] : On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-slip boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, 1, 1996, 35-75. | Zbl | MR | Numdam
[4] : On the controllability of 2-D incompressible perfect fluids. J. Math. Pures et Appl., 75, 1996, 155-188. | Zbl | MR
[5] : Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C. R. Acad. Sci. Paris, 317, Série I, 1993, 271-276. | Zbl | MR
[6] , : Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary, Russian Journal of Math. Physics 4, 1996, n° 3, 1-20. | Zbl | MR
[7] : Résultats d'unicité pour les équations de Stokes et applications au contrôle, C. R. Acad. Sci. Paris, 322, Série I, 19961191-1196. | Zbl
[8] , : Prolongement unique des solutions de l'équation de Stokes, Com. P.D.E., 21, 1996, n° 3 - 4, 573-596. | Zbl | MR
[9] : Lagrange principle for problems of optimal control of ill-posed or singular distributed systems, J. Maths Pures Appl., 71, 1992, n° 2, 139-195. | Zbl | MR
[10] : Exact boundary zero controllability of three dimensional Navier-Stokes equations, J. of Dynamical and Control Syst., 1, 1995, n° 3, 325-350. | Zbl | MR
[11] : The Cauchy problem for a second-order elliptic equation in a conditionally well-posed formulation, Trans. Moscow Math. Soc., 1990, 139-176. | Zbl | MR
[12] , : On controllability of certain systems simulating a fluid flow, in Flow Control, IMA vol. Math. Appl., Ed. by M.D. Gunzburger, Springer-Verberg, New York, 68, 1995, 148-184. | Zbl | MR
[13] , : On exact boundary zero-controllability of two-dimensional Navier-Stokes equations, Acta Applicandæ Mathematicæ, 37, 1994, 67-76. | Zbl | MR
[14] , : Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary, Sbornik Mathematics, 187, 1996, n° 9, 1355-1390. | Zbl | MR
[15] , : Local exact boundary controllability of the Boussinesq equation, SIAM J. Cont. Opt., 36, Issue 2, 1998. | Zbl | MR
[16] , : Local exact controllability of the Navier-Stokes Equations, C. R. Acad. Sci. Paris, 323, Série I, 1996, 275-280. | Zbl | MR
[17] , , Controllability of evolution equations, Lecture notes series 34 SNU, Seoul 1996. | Zbl | MR
[18] , : On approximate controllability of the Stokes system, Annales de la Faculté des Sciences de Toulouse, 11, 1993, 205-232. | Zbl | MR | Numdam
[19] : Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. | Zbl | MR
[20] : Boundary controllability of parabolic equations, Sbornik Mathematics, 186, 1995, n° 6, 879-900. | Zbl | MR
[21] : Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions, Lecture Notes in Physics, 491, 1997, 148-168. | Zbl | MR
[22] , : Introductory Real Analysis, Dover Publications, INC, New York, 1996. | Zbl | MR
[23] , : Linear and Quasilinear Equations of Elliptic Type, Academic Press, New York, 1968. | MR
[24] : Contrôle des Systèmes Distribués Singuliers, Gauthier-Villars, Paris, 1983. | Zbl | MR
[25] : Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag 1971. | Zbl | MR
[26] : Are there connections bet ween turbulence and controllability?9e Conférence internationale de l'INRIA, Antibes. 12-15 juin 1990.
[27] : Navier-Stokes Equations, North-Holland Publishing Company, Amsterdam, 1979. | Zbl | MR





