@article{COCV_1998__3__407_0,
author = {Bonnard, B. and Launay, G.},
title = {Time minimal control of batch reactors},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {407--467},
year = {1998},
publisher = {EDP Sciences},
volume = {3},
mrnumber = {1658682},
zbl = {0914.93043},
language = {en},
url = {https://www.numdam.org/item/COCV_1998__3__407_0/}
}
Bonnard, B.; Launay, G. Time minimal control of batch reactors. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 407-467. https://www.numdam.org/item/COCV_1998__3__407_0/
[1] : Symplectic methods in optimization and control. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. | Zbl
[2] : Rapport préliminaire sur la conduite optimale des réacteurs chimiques de type batch, Prépublication de l'Université de Bourgogne, Laboratoire de Topologie, n° 58, 1995.
[3] , : Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. Contr. Opt., 33, 1995, 1279-1311. | Zbl | MR
[4] , : Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum mathematicum, 5, 1993, 111-159. | Zbl | MR
[5] , , : Classification générique de synthèses temps minimales avec cible de codimension un et applications. Ann. IHP (an), 14, 1997, 55-102. | Zbl | MR | Numdam
[6] : Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, 47, 1977, 1-32. | Zbl | MR | Numdam
[7] : Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, 42, 1987, 2229-2268.
[8] , : Several complex variables, Springer Verlag, New York, 1976. | Zbl | MR
[9] : Advanced Process Control, Butterworths Reprint Series in chemical engineering, 1989.
[10] : Lie algebras of vector fields and local approximation of attainable sets, SIAM J. Control Opt., 16, 1978, 715-727. | Zbl | MR
[11] : Critical Hamiltonians and feedback invariants. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. | Zbl | MR
[12] : Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, Trans. Amer. Math. Soc., 299, 1987, 225-243. | Zbl | MR
[13] : Optimalité des extrémales ordinaires, Communication personnelle.
[14] , : The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dyn. Contr. Syst., 3, 1997, 165-204. | Zbl | MR
[15] et al.: Théorie mathématique des processus optimaux, Mir, Moscou, 1974. | Zbl | MR
[16] : The structure of time-optimal trajectories for single-input systems in the plane: the C∞ non singular case, SIAM J. Control Opt., 25, 1987, 433-465. | Zbl | MR
[17] : Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. Control Opt., 25, 1987, 1145-1162. | Zbl | MR






