@article{COCV_1998__3__381_0,
author = {Piccoli, B.},
title = {Infinite time regular synthesis},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {381--405},
year = {1998},
publisher = {EDP Sciences},
volume = {3},
mrnumber = {1655990},
zbl = {0921.93016},
language = {en},
url = {https://www.numdam.org/item/COCV_1998__3__381_0/}
}
Piccoli, B. Infinite time regular synthesis. ESAIM: Control, Optimisation and Calculus of Variations, Tome 3 (1998), pp. 381-405. https://www.numdam.org/item/COCV_1998__3__381_0/
[1] , : Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equation, Birkäuser, Boston, 1998. | Zbl | MR
[2] : Sufficient conditions for optimality and the justification of the dynamic programming principle, SIAM J. Contr. and Opt., 4, 1966, 326-361. | Zbl | MR
[3] , : Structural stability for time-optimal planar syntheses, Dynamics of Continuous, Discrete and Impulsive Systems 3, 1997, 335-371. | Zbl | MR
[4] , : A generic classification of time optimal planar stabilizing feedbacks', SIAM J. Contr. and Opt. 36, 1998, 12-32. | Zbl | MR
[5] : Every normal linear system has a regular time-optimal synthesis, Math. Slovaca 28, 1978, 81-100. | Zbl | MR
[6] : Existence of regular syntheses for general problems, J. Diff. Eq., 38, 1980, 317-343. | Zbl | MR
[7] : Optimization - Theory and applications, Springer-Verlag, New York, 1983. | Zbl | MR
[8] , : Deterministic and stochastic optimal control, Springer-Verlag, New York, 1975. | Zbl | MR
[9] , : Controlled Markov processes and viscosity solutions, Springer-Verlag, New York, 1993. | Zbl | MR
[10] : Regular time-optimal syntheses for smooth planar Systems, Rend. Sem. Mat. Univ. Padova 95, 1996, 59-79. | Zbl | MR | Numdam
[11] : Classification of generic singularities for the planar time optimal syntheses, SIAM J. Contr. Opt. 34, 1996, 1914-1946. | Zbl | MR
[12] , : Regular synthesis and sufficiency conditions for optimality, to appear in SIAM J. Contr. Opt.. | Zbl | MR
[13] : Singular optimal controls for second-order saturating systems, Int. J. Control 30, No. 4 1979, 549-564. | Zbl | MR
[14] : Subanalytic sets and feedback control, J. Diff. Eq. 31, No.l, 1979, 31-52. | Zbl | MR
[15] : Lie brackets, real analyticity and geometric control theory, in Differential Geometric Control Theory, R. W. Brockett, R.S. Millman and H.J. Sussmann Eds., Birkhäuser Boston Inc., 1983, 1-115. | Zbl | MR
[16] : Regular synthesis for time-optimal control of single-input real-analytic systems in the plane, SIAM J. Contr. Opt. 25, No. 5, 1987, 1145-1162. | Zbl | MR
[17] : Recent developments in the regularity theory of optimal trajectories, in Linear and nonlinear mathematical control theory, Rend. Sem. Mat. Univ. e Pol. Torino, Fascicolo speciale, 1987, 149-182. | Zbl | MR
[18] : Synthesis, presynthesis, sufficient conditions for optimality and subanaltic sets, in Nonlinear controllability and optimal control, H.J. Sussmann ed., Marcel Dekker, New York, 1990, 1-19. | Zbl | MR





