@article{COCV_1996__1__207_0,
author = {Gr\"une, Lars},
title = {Discrete feedback stabilization of semilinear control systems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {207--224},
year = {1996},
publisher = {SMAI (Soci\'et\'e de math\'ematiques appliqu\'ees et industrielles)},
address = {Paris},
volume = {1},
mrnumber = {1405041},
zbl = {0867.93071},
language = {en},
url = {https://www.numdam.org/item/COCV_1996__1__207_0/}
}
TY - JOUR AU - Grüne, Lars TI - Discrete feedback stabilization of semilinear control systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 1996 SP - 207 EP - 224 VL - 1 PB - SMAI (Société de mathématiques appliquées et industrielles) PP - Paris UR - https://www.numdam.org/item/COCV_1996__1__207_0/ LA - en ID - COCV_1996__1__207_0 ER -
%0 Journal Article %A Grüne, Lars %T Discrete feedback stabilization of semilinear control systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 1996 %P 207-224 %V 1 %I SMAI (Société de mathématiques appliquées et industrielles) %C Paris %U https://www.numdam.org/item/COCV_1996__1__207_0/ %G en %F COCV_1996__1__207_0
Grüne, Lars. Discrete feedback stabilization of semilinear control systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 1 (1996), pp. 207-224. https://www.numdam.org/item/COCV_1996__1__207_0/
[1] : Local Stabilizability of Nonlinear Control Systems, World Scientific, Singapore, 1992. | Zbl | MR
[2] : Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, R.W. Brockett, R.S. Millman, and H.J. Sussmann, eds., 181-191, Birkhäuser, Boston, 1983. | Zbl | MR
[3] and : Discrete dynamic programming and viscosity solutions of the Bellman equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 6 (supplément), 1989, 161-184. | Zbl | MR | Numdam
[4] and : Approximate solutions of the Bellman equation of deterministic control theory, Appl. Math. Optim., 11, 1984, 161-181. | Zbl | MR
[5] , , and : Stabilization of nonlinear systems: A bilinear approach, Math. Control Signals Syst., 6, 1993, 224-246. | Zbl | MR
[6] , , , and : Asymptotic controllability and feedback stabilization, in Proc. Conf. on Information Sciences and Systems (CISS 96), Princeton, NJ, 1996. To appear, full version submitted.
[7] , , and : Control of bursting in boundary layer models, Appl. Mech. Rev., 47, 1994, 139-143.
[8] and : Linear control semigroups acting on projective space, J. Dyn. Differ. Equations, 5, 1993, 495-528. | Zbl | MR
[9] and , Maximal and minimal Lyapunov exponents of bilinear control systems, J. Differ. Equations, 101, 1993, 232-275. | Zbl | MR
[10] and , Asymptotic null controllability of bilinear systems, in Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications Vol. 32, Warsaw, 1995, 139-148. | Zbl | MR
[11] : A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim., 15, 1987, 1-13. Corrigenda, ibid. 23, 1991, 213-214. | Zbl | MR
[12] and : Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67, 1994, 315-344. | Zbl | MR
[13] : An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation, Numer. Math., 1996. To appear. | Zbl | MR
[14] , Numerical stabilization of bilinear control systems, SIAM J. Control Optim., 1996. To appear. | Zbl | MR
[15] : On stabilizing feedback attitude control, J. Optimization Theory Appl., 31, 1980, 373-384. | Zbl | MR
[16] , On the synthesis of stabilizing feedback control via Lie algebraic methods, SIAM J. Control Optim., 18, 1980, 352-361. | Zbl | MR
[17] : Nonlinear Control systems: An Introduction, Springer Verlag, Berlin, 1989. | Zbl | MR
[18] and : Game-Theoretical Control Problems, Springer Verlag, New York, 1988. | Zbl
[19] : Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982. | Zbl | MR
[20] : Nonlinear regulation: The piecewise linear approach, IEEE Trans. Autom. Control, AC-26, 1981, 346-358. | Zbl | MR
[21] : Feedback stabilization using two-hidden-layer nets, IEEE Trans. Neural Networks, 3, 1992, 981-990.
[22] and : Maximal Lyapunov exponents and rotation numbers for two coupled oscillators driven by real noise, J. Stat. Phys., 71, 1993, 549-567. | Zbl | MR
[23] and : Introduction to Numerical Analysis, Springer Verlag, New York, 1980. | Zbl | MR






