@article{CM_1996__104_3_227_0,
author = {Noumi, Masatoshi and Umeda, T\^oru and Wakayama, Masato},
title = {Dual pairs, spherical harmonics and a {Capelli} identity in quantum group theory},
journal = {Compositio Mathematica},
pages = {227--277},
year = {1996},
publisher = {Kluwer Academic Publishers},
volume = {104},
number = {3},
mrnumber = {1424556},
zbl = {0930.17012},
language = {en},
url = {https://www.numdam.org/item/CM_1996__104_3_227_0/}
}
TY - JOUR AU - Noumi, Masatoshi AU - Umeda, Tôru AU - Wakayama, Masato TI - Dual pairs, spherical harmonics and a Capelli identity in quantum group theory JO - Compositio Mathematica PY - 1996 SP - 227 EP - 277 VL - 104 IS - 3 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1996__104_3_227_0/ LA - en ID - CM_1996__104_3_227_0 ER -
%0 Journal Article %A Noumi, Masatoshi %A Umeda, Tôru %A Wakayama, Masato %T Dual pairs, spherical harmonics and a Capelli identity in quantum group theory %J Compositio Mathematica %D 1996 %P 227-277 %V 104 %N 3 %I Kluwer Academic Publishers %U https://www.numdam.org/item/CM_1996__104_3_227_0/ %G en %F CM_1996__104_3_227_0
Noumi, Masatoshi; Umeda, Tôru; Wakayama, Masato. Dual pairs, spherical harmonics and a Capelli identity in quantum group theory. Compositio Mathematica, Tome 104 (1996) no. 3, pp. 227-277. https://www.numdam.org/item/CM_1996__104_3_227_0/
[Ab] : HopfAlgebras, Cambridge Math. Tracts 74, Cambridge Univ. Press, 1980. | Zbl | MR
[B] : The diamond lemma for ring theory, Adv. Math. 29 (1978) 178-218. | Zbl | MR
[D] : Quantum groups, in Proc. Int. Cong. Math. Berkeley, 1986, pp. 798-820. | Zbl | MR
[F] : Über algebraische Modulsysteme und lineare homogene partielle Differentialgleichungen mit konstaten Koeffizienten, J. Reine Angew. Math. 140 (1911) 48-81. | JFM | MR | EuDML
[GK] and : q-Deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys. 21 (1991) 215-220. | Zbl | MR
[Ha] : Q-analogues of Clifford and Weyl algebras - spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990) 129-144. | Zbl | MR
[HiW] and : A q-analogue of Capelli's identity for GL q (2), Adv. in Math. (to appear). | Zbl | MR
[H1] : Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989) 539-570; Erratum, Trans. Amer. Math. Soc. 318 (1990) p. 823. | Zbl | MR
[H2] : Dual pairs in physics: Harmonic oscillators, photons, electrons, and singletons, in Lectures in Applied Math. vol. 21, 1985, pp. 179-207. | Zbl | MR
[HU] and : The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991) 565-619. | Zbl | MR
[Ja] : On q-functions and a certain difference operator, Trans. Roy. Soc. Edinburgh 46 (1908) 253-281.
[J1] : A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63-69. | Zbl | MR
[J2] : A q-analogue of U(gt(N + 1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986) 247-252. | Zbl | MR
[Na1] : Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21 (1991) 123-131. | Zbl | MR
[Na2] : private communication.
[N1] : A remark on semisimple elements in Uq (sl(2, C)), Combinatorial Aspects in Representation Theory and Geometry, RIMS Kôkyûroku 765 (1991) 71-78.
[N2] : A realization of Macdonald's symmetric polynomials on quantum homogeneous spaces, in Proceedings of the 21st International Conference on Differential Geometric Methods in Theoretical Physics, Tianjin China, 1992.
[N3] : Quantum Grassmannians and q-hypergeometric series, CWI Quarterly 5 (1992) 293-307. | Zbl | MR
[N4] : Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces, to appear, Adv. Math.. | Zbl | MR
[NUW1] , and : A quantum analogue of the Capelli identity and an elementary differential calculas on GLq (n) Duke Math. J. 76 (1994) 567-594. | Zbl | MR
[NUW2] , and : A quantum dual pair (sl2, On) and the associated Capelli identity, Lett. Math. Phys. 34 (1995) 1-8. | Zbl | MR
[O] : Twisted Yangians and infinite-dimensional classical Lie algebras, in Quantum Groups, Lecture Notes in Math. 1510, Springer Verlag (1992), pp. 103-120. | Zbl | MR
[RTF] Yu., and : Quantization of the Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193-225. | Zbl | MR
[U] : Notes on almost homogeneity, preprint (1993).
[UW] and : Another look at the differential operators on quantum matrix spaces and its applications, in preparation. | Zbl
[Wy] : The Classical Groups, their Invariants and Representations, Princeton Univ. Press, 1946. | Zbl | MR






