@article{CM_1996__104_2_189_0,
author = {Vasconcelos, Wolmer V.},
title = {The reduction number of an algebra},
journal = {Compositio Mathematica},
pages = {189--197},
year = {1996},
publisher = {Kluwer Academic Publishers},
volume = {104},
number = {2},
mrnumber = {1421399},
zbl = {0867.13001},
language = {en},
url = {https://www.numdam.org/item/CM_1996__104_2_189_0/}
}
Vasconcelos, Wolmer V. The reduction number of an algebra. Compositio Mathematica, Tome 104 (1996) no. 2, pp. 189-197. https://www.numdam.org/item/CM_1996__104_2_189_0/
1 : K-theory of endomorphisms, J. Algebra 55 (1978) 308-340; Erratum, J. Algebra 68 (1981) 520-521. | Zbl | MR
2 and : What can be computed in Algebraic Geometry?, in Computational Algebraic Geometry and Commutative Algebra, Proceedings, Cortona 1991 (D. Eisenbud and L. Robbiano, Eds.), Cambridge University Press, 1993, pp. 1-48. | Zbl
3 and : Macaulay: A system for computation in algebraic geometry and commutative algebra, 1992. Available via anonymous ftp from zariski. harvard. edu.
4 and : Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993. | Zbl | MR
5 and : Linear free resolutions and minimal multiplicities, J. Algebra 88 (1984) 89-133. | Zbl | MR
6 : Moduln Über Streckungsringen, Results in Mathematics 15 (1989) 202-220. | Zbl | MR
7 : On the length of faithful modules over Artinian local rings, Math. Scand. 31 (1972) 78-82. | Zbl | MR
8 : Connectedness of the Hilbert scheme, Publications Math. I.H.E.S. 29 (1966) 261-304. | Zbl | MR | Numdam
9 : Castelnuovo's regularity of graded rings and modules, Hiroshima Math. J. 12 (1982) 627-644. | Zbl | MR
10 : Zur Theorie der Vertauschbären Matrizen, J. reine angew. Math. 130 (1905) 66-76. | JFM
11 : On filtered modules and their associated graded modules, Math. Scand. 33 (1973) 229-249. | Zbl | MR
12 , and : Bounds on degrees of projective schemes, Math. Annalen 302 (1995) 417-432. | Zbl | MR
13 : Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987) 229-236. | Zbl | MR





