@article{CM_1996__104_2_125_0,
author = {Shimada, Ichiro},
title = {A note on {Zariski} pairs},
journal = {Compositio Mathematica},
pages = {125--133},
year = {1996},
publisher = {Kluwer Academic Publishers},
volume = {104},
number = {2},
mrnumber = {1421396},
zbl = {0878.14018},
language = {en},
url = {https://www.numdam.org/item/CM_1996__104_2_125_0/}
}
Shimada, Ichiro. A note on Zariski pairs. Compositio Mathematica, Tome 104 (1996) no. 2, pp. 125-133. https://www.numdam.org/item/CM_1996__104_2_125_0/
1 : Sur les couples de Zariski, J. Alg. Geom. 3 (1994), 223-247. | Zbl | MR
2 : Alexander invariants of plane algebraic curves, Proc. Symp. in Pure Math. 40 (1983), 135-143. | Zbl | MR
3 : Fundamental groups of the complements to plane singular curves, Proc. Symp. in Pure Math. 46 (1987), 29-45. | Zbl | MR
4 : On the fundamental group of the complement of certain singular plane curves, Math. Proc. Cambridge Philos. Soc. 102 (1987), 453-457. | Zbl | MR
5 : Some plane curves whose complements have non-Abelian fundamental groups, Math. Ann. 218 (1975), 55-65. | Zbl | MR
6 : Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan 44 (1992), 375-414. | Zbl | MR
7 : Two transformations of plane curves and their fundamental groups, to appear in J. Math. Sci. Univ. Tokyo. | Zbl | MR
8 : Fundamental groups of open algebraic varieties, Topology 34 (1995), 509-531. | Zbl | MR
9 : Fundamental groups of complements to singular plane curves, to appear in Amer. J. Math. | Zbl | MR
10 : A remark on Artal's paper, preprint. | Zbl
11 : On the fundamental group of a certain class of plane curves, Amer. J. Math. 59 (1937), 529-577. | Zbl | MR | JFM
12 : On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51 (1929), 305-328. | MR | JFM
13 : A theorem on the Poincaré group of an algebraic hypersurface, Ann. Math. 38 (1937), 131-141. | Zbl | MR | JFM
14 : The topological discriminant group of a Riemann surface of genus p, Amer. J. Math. 59 (1937), 335-358. | Zbl | MR | JFM





