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1. Introduction

Let GG be a finite subgroup of a real simple Lie group A. Then, viewing A as the
real points of a simple algebraic group defined over R and using a result of Weil
(cf. [Wei 64], [Slo 93], [CoW 94]), we can find a number field K and a K-form
Ag of A so that G is conjugate in A to a subgroup of the group Ax (K) of the
K -rational points of Ag.

If A is compact of type G, then A is known to be the automorphism group
Aut(C) of the real Cayley division ring C'. In line with the above result, one might
expect, for a finite subgroup G of A, a K-form Ck of C into whose automorphism
group GG embeds. Such a form Ci will be called a K-G-form (see below for a
precise definition). Pushing it even further, one may ask for an RG-invariant order
in Ck, where R is the ring of integers in K.

In [CoW 83], the finite subgroups of G(C), resp. Aut(C), are described. The
maximal finite ones that are not contained in a proper closed Lie subgroup (of nonze-
ro dimension) are isomorphic to 23-GL(3, 2), Go(2), PSL(2, 8), or PSL(2, 13) (one
conjugacy class for each isomorphism type, see [Gri 94]). Viewed as subgroups of
GL(C), they have unique minimal splitting fields K, namely Q, Q, Q(cos(27/9)),
Q(+/13) in the respective cases. It turns out that there is a unique K -form Cx with
G < Aut(Ck).

Passing to the arithmetic of the situation, call a full Z-lattice L in Cx a Cayley
order for G, if

(1) L is multiplicatively closed;
(ii) L is G-invariant;
(>iii) L is maximal with (i) and (ii).

GENERAL LEMMA. Let L be a Cayley order in Ck for G. Then L is an R-lattice
containing the unit element ep = 1 of Ck.

Proof. Consider the full Z-lattice generated by RL and Rey. It is a Cayley order
for G again and contains L, so must coincide with L. a
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Remark. Let C& be the usual Cayley division algebra over Q (see section 2
below). A Cayley order in C’& for the trivial group is a set of integral elements in
the sense of [Dic 23], pp. 141-142; see also properties (i)—(iv) listed in [Cox 46].

In [Cox 46], Coxeter pointed out a Cayley order for the trivial group with
K = Q, which also is a Cayley order for G»(2). In [vdBS 591, it is shown that
this Cayley order is unique up to isomorphism for the trivial group in C&. This
Cayley order is known to have 240 invertible elements. Its number theory has been
investigated in [Reh 94].

The main result of this paper, which uses computer calculations as described in
Section 4.2.2 of [HoP 89], contends that for all four maximal finite closed subgroups
there are unique Cayley orders. But the Cayley orders for the three groups # G2(2)
are less interesting in the sense that no surprising invertible elements are found to
occur except for some well-known ones for 23 - GL(3, 2). For instance the Cayley
order for the latter group is spanned by the usual monomial basis ey, ..., e7 (see
below) and %(60 + -+ -+ e7); its invertible elements are te; fori = 0,...,7.

THEOREM. Let G be a subgroup of Aut(C') isomorphic to one of 23 - GL(\/_)
G2(2), PSL(2,8), and PSL(2,13), and let K = Q, Q, Q(2cos(27/9)), Q(+/13)
in the respective cases. Then there is a unique K -G-form Cg of C on which G acts.
Moreover; inside C'i there is a unique Cayley order for G. In the latter two cases,
all of their invertible elements are contained in the units of R, the ring of integers
of K (via the identification of R - eq with R, where e is the identity element of C ).

2. Preliminaries

We first recall an explicit construction of the real Cayley division ring C. As a
vector space, C' is 8-dimensional over R with basis (e;|¢ = 0,...,7) (the nonzero
indices will be taken mod 7 with values in 1,...,7). With respect to this basis the
multiplication is given by

e%:—eo fort=1,...,7,

e;e; = —eje; = e, if (4,5,k) = (14 £,2+ £,4+ £) for some £,

eoe; = €jeq = €; for all j.

We denote by C’& the Q-subalgebraof C with Q-basisey, .. ., e7. By (-, -) we denote
the standard inner product with respect to this basis. A characteristic property of C'
is that the corresponding quadratic form N with N(z) := (z, z) is multiplicative,
i, N(zy) = N(z)N(y) for all z,y € C. Moreover this inner product defines
an involution ™ : C — C, & + 2(z,eg)eo — z. Then (z,y)eo = 3(27 + yT) =
(27, e0)eg forallz,y € C.

Let 7 : C — C be the orthogonal projection onto Reg = Fix¢(7) and 7/ :=
id — 7. Then 7(z) = $(z + ) = (=, €0)eo and 7'(z) = Nz -7)foralz € C.
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Note C' = Reg® V with V = (ey,..., e7)g = 7'(C), the orthogonal complement
of Regin C.

Let G be a finite subgroup of Aut(C). Call a K -subspace Cx of C' a K-G-form
of C, if

(i) Ck has a K -basis which is an R-basis of C';
(ii) Ck is a K -subalgebra of C;
(iii) G acts on Ck by K -algebra automorphisms.

Denote the orthogonal complement (with respect to N) of Keg in Ck by V.
Thus, for example, Cg) is a K-1-form of C and Vg = (ey, ..., €7)q.
For the proof of the next lemma one needs the following

MULTIPLICATION FORMULA. 7'(z - 7'(z - y)) = (z,y)z — (z,z)y for all
z,y€eV.

Proof. Letz,y € V. Then using the fact that 7'(z) = z—(z, e9)ep forall z € C,
onegets 7'(z-7'(z-y)) = z(zy)—(zy, eo)z—(z(zy), e0)eo+(zy, €0)(z, €0)eo ().
Since 2,y € V one has (y, e0) = (z,e) = Oand z(zy) = 2’y = —N(z)y € V.
Moreover (zy,ep) = (2,9) = —(z,y). Using (x), we find 7'(z - 7'(z - y)) =
—N(z)y + (z,y)z. o

UNIQUE K -G-FORM LEMMA. Let K be a subfield of R such that G < Aut(C)
is conjugate under GL(C) to a subgroup of GLg( K). Assume that the character of
G on C is 1 + x with x absolutely irreducible.

(a) There exists at most one K-G-form Cg of C.
(b) If x satisfies (xz_, X) = 1 (where x>~ denotes the character of G on the
skewsymmetric part N>V of V @ V), then there exists a K -G-form Cx of C.

Proof.

(a) Let Ck, Cy be K-G-forms of C. Clearly Cx = Key® Vi, with Vi asimple
K G-submodule of V' (the orthogonal complement of Regp in C'). Similarly
Ck = Key @ Vi. By absolute irreducibility there exists a A € R with
Vi = AVk, because a K G-isomorphism from Vg to V, extends uniquely
to an RG-isomorphism of V. Choose v;, v; € Vi with vjv; = aeg + w and
0 # w € Vk. Then Avy Ava = A2aeg + A(Aw). Since Aw € AVk = Vi and
A2w € V, one concludes that A € K.

(b) The morphism /\2 V — V determined by z A y — 7'(zy) is G-equivariant.
But, by the character condition, any such morphism is a scalar multiple of a
nonzero generator of the 1-space of (G-equivariant morphisms /\2 V - V.
This generator is defined over Vg, and so there is A € R, A # 0, such that
7'(zy) € AV for all z, y € V. Replacing Vi by A=V, we find that

m'(zy) € Vg forall =z,y € Vk.
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But then the multiplication formula shows that N(z) € K and (z,y) € K for
all z,y € Vk. In particular, zy = 7'(zy) 4+ n(zy) = 7'(2y) + (zy, eo0)eo €
Key + Vi. We conclude that Key + Vi is a K-G-form.

Now, let G' be one of the four maximal finite subgroups mentioned above and let
K be the minimal splitting field of the representation of G on C, resp. V. Then
( satisfies the character conditions of the unique K-G-form lemma, hence there
is a unique K-G-form in each case. Our computations show that Cx = K C&.
The latter follows immediately in the first 3 cases of G, but after some calculation
in the last case (cf. below). It can also be concluded from [Spr 63], pg. 14. This
establishes the first statement of the theorem in Section 1.

Coming to the arithmetic let L be a Cayley order for GG in C'x;. Then, as a K G-
module, K L is isomorphic to Key @ Vx where Vi = (ey,...,e7)k is a simple
K G-module of dimension 7. Set Ly := LN Vg and L} := «'(L). Then L; and L]
are RG-lattices in Vi by the General Lemma.

NORM LEMMA. Foranyz € Lwehave N(z) € RandT = 2(z,ep)ep—z € L.

Proof. For z € L consider left multiplication with z. Its characteristic polyno-
mial lies in R[t], since zL C L. On the other hand z is a root of the quadratic
polynomial #*> — 2(eg,z)t + N(z) which must therefore divide the characteris-
tic polynomial and hence lies in R([t]. The first part follows from a look at the
constant term. The linear term gives 2(z,e9) € R, so, by the General Lemma,
2(z,e9)eg € L, whence T € L. o

COROLLARY. Either L = Reg @ Ly or Reg ® Ly C L C 1Rey @ L) with
Li/Ly 2 AR/Rand 2(Ly, L}) C R.

Proof. Since R 2 2(eg, L) = 2(eg, w(L)) one has 7(L) C 1 R. Since 2R is a
maximal ideal of R, there are only two possibilities: 7(L) = R or 7(L) = 1 R.
Moreover 2( Ly, L}) = 2(L1,L) C R. O

For all four groups G it turns out that the second possibility occurs, i.e., L is a
subdirect product of %Reo and L) amalgamated over the common factor module
IR/R = L|/Li 2 Fp» withn = [K : Q] on which G acts trivially. For the prime
ideals p of R not containing 2 the above corollary has an important consequence.

ODD PRIME LEMMA. Let p be a prime ideal of R not dividing 2. Then the p-adic
completion L, of L is given by Ryeq & (L1),, where (L1),, is the unique R,G-
sublattice X of K, ®x Vg with X = X*:= {z € K, ®k Vi | (X,z) C R,}.
Proof. From the decomposition numbers, cf. [JLPW 94], one immediately sees
that X /pX is a simple R/pG-module in all four cases. Therefore the set of R,G-
lattices in K, @k Vi forms a chain of thekind... 2 p7 !X D X D pX D ---
Our later constructions show that there is an RG-lattice Y in Vi such that
Y-Y CRey®Y and [Y*: Y]isa2-power, where Y* := {z € Vi | (Y,z) C R}.
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(For instance 2L satisfies these requirements.) Hence there is exactly one R,G-
lattice X in K, @ Vi satisfying X = X # Moreover X - X C Roeod X. O

This lemma leaves only the prime 2 to be investigated. There the lattice of RG-
lattices in Vi is more complicated. It can however be computed by the method
described in [HoP 89] pg. 105, which runs roughly as follows: Let M be any full
RG-lattice in Vg and M’ be a maximal RG-sublattice of M. Then M/M' is a
simple (R/pR)G-module for some prime p in R, hence M’ is the kernel of an
epimorphism M — S for some simple (R/pR)G-module S.

The remainder of this paper is devoted to this investigation and hence a case by
case proof of the second part of the theorem in Section 1.

The final point of this section concerns the notation for matrices: they act from
the right; diag( A, ..., A,) denotes the block diagonal matrix with A,,..., A, on
the (block-)diagonal; for a permutation 7 in the symmetric group .5, usually given
in disjoint cycle notation, P,(7) denotes the n X n-permutation matrix whose
(2,7)-entry is 1 if ¢ér = j and O otherwise.

3. The case G = 2% - GL(3,2)

Here K = Q and R = Z. With respect to the basis (ey, ..., e7) of Vg, the group G
is generated by the following two matrices:

diag(1,1,1,-1,-1,1,1)- P((1,2)(3,6)),
and P;((1,2,3,4,5,6,7)) (cf.[Cox 46]).

Thus we can take Vx = ®7_;Qe;. Up to isomorphism (i.e., up to multiplication
with elements of Q*) there are five ZG-lattices M, ..., Ms in V. Representatives
can be chosen as follows

%M]E M1 = (61,...,e7>
M, My = (T aie; | Sy @i € Z,0; € 3Z)
My = (My,(es +es+ e+ e7), 2(e2 + es + es5 + es),
%(61 + es + e + 7))
My .
Ms = (Ml, 5(61 + ...+ 67))

3

Ms
M]:

%M 1/M>, My/My, and My4/M; are nonisomorphic simple F, G-modules of
dimensions 1, 3, 3, respectively. One has M; - M} = Zey @ M, but (M, %(eo +
-+ -+ e7)) is still multiplicatively closed, whereas My - My = %Zeo )\S %M 1 is the
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subdirect product of %M 1 and %Zeo amalgamated over the common factor module
§ %Ml /My = YZeo/Zey and Ms - Ms = %Z @ M,. Since the multiplicative
closures of the lattices M, and M5 are no longer lattices, one has that, as a Z-lattice,
the unique Cayley order for G is generated by e, ..., e7 and %(eo + .-+ e7).

4. The case G = G(2)

Again K = Q and R = Z. With respect to the basis (ey, ..., e7) of Vi, the group
G is generated by the two matrices

0 1-1 0 01 -1
0-1 0-1-11 0
0-1 0 1 11 0
0 1 1 0 01 1| anddiag(-1,1,1,1,1,1,—1)- P;((1,6)(4,7)).
-2 0 0 0 00 O
0 1 1-10-1
0-1 1-10 1)

N -

Thus we can take Vx = @]_;Qe;. Up to isomorphism (i.e., up to multiplication
with elements of Q*) there are two ZG-lattices M and M> in V. Representatives
can be chosen as follows: M| = (61, e, €3, €g, %(61 +er+es+ 66), %(62 +e3+
e6 +e7), 3(e1+ €2+ e3 + €4))z, Ma = (2M}, €3 + e4 + €6). Both M1 /M, and
M, /2M,; are simple F,G-modules of dimensions 6 and 1, respectively. One has
M- M, = Zeo® Ma, and My - M = (eq, e1, €2, €3, 3(eo+e3+es+es), 3(e1+
ertes+es), H(eatestes+er), y(er+ertestes))s™ jZe {53 My isthe
subdirect product of %Zeo and %M » amalgamated over the common factor module
S %Mz /M = %Zeo/Zeo. Since M, - M; is multiplicatively closed, it is the
unique Cayley order for G.

5. The case G = PSL(2,8)

Now R = Z[w], where w3 — 3w 4+ 1 = 0, is the ring of all integers in K =
Q(w) = Q(cos(27/9)). With respect to the basis (e, ..., e7) of Vk, the group G
is generated by the following three matrices
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diag(-1,1,1,-1,1,-1,-1) & (i ?)

l+w+w? 0
P7((172,3,4,5’677))<—) 9
14w w?
a bb+1 c —la-1 —w\
bb+1 —c -1 —a+1 w —a
b+1 -—¢ 1 —a+1 —w a —b
1 01
- —c la-1 —w —-a b -b—-11}] & .
4 11
la-1 w —a -b b41 c
a-1 w a -b -b—-1 —c¢ -1
w a b -b-1 c 1—a+1)
Here ¢ := 3 —w— w?, b := -2+ w? and ¢ := —1 — w. Again we can take

Vg = EBZle e;. The 2 x 2-matrices added indicate a correspondence with the
usual presentation of PSL(2, 8) over F;[w]. Note that {ey,...,e7)r is not an RG-
lattice in V.

Up to isomorphism (i.e., up to multiplication with elements of K*) there are
four RG-lattices My, ..., M4 in V. Representatives can be chosen as follows

M, = %(el + (w +w2)ez twes+(l—w-— wz)e4

]\[1E —w265+(1+2w+w2)e6—(1+w)e7)-RG
M, My M= }H(~1+w)er —e2 + (w + w?)es — wes
M, —(1 —w—w)es — (2 — 2w — w?)es + (1 + w?)es) - RG

M; = %(e; + wles + weg + (-24w-— w2)87) -RG

2M15~~. My = %(el — wle3 — wles + wes + wres + 14+w+ w2)37) -RG

M, /M, My/M3,and M4 /2M represent nonisomorphic simple Fg G-modules
of dimensions 1, 4, 2, respectively.
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One has M - My = %Reo O My, My - My = %Reo /{S%M& where 5 =
% Reo/% Reg = %M:;/%MA,, M;-M; = %Re()EB %M4 and My-My = 1 Reg ASM3,
where § = %Reo /Rep = Ms3/Mjy. 1t follows that L = My - My is the unique
Cayley order for PSL(2, 8).

Invertible elements of L have invertible norms lying in R. Being interested
in which invertible values from R the Cayley norm takes, we compute modulo
squares, as they are the norms of elements from K themselves. Modulo squares we
have R*/(R*)* = (Z/2Z)3. So there are 8 invertible values modulo squares of R*.
They correspond to the 8 different sign patterns for the 3 real embeddings. But the
norm values must be positive in each embedding, and so only the class of 1 € R*
occurs as a norm value. The elements of L of norm 1 are precisely +eg.

6. The case G = PSL(2,13)

We recall from [CoW 83] the following three elements of Aut(C') generating a
subgroup G isomorphic to PSL(2,13). The action is written with respect to the
basis ey, ..., e7 of V. The 2 x 2 matrices added indicate a correspondence with the
usual presentation of PSL(2, 13).

{——100
0 00
010
0 00
0 01
0
0

S = O

20
- ;
07

©c o © o © o
© © © © © © ©
|
—_

00
00 -1

S o O
I
P

0 0
0 0
S6
11
0 0| - :
01
0 O 0 cg —s3 0
0 0 0s5 cg O
0 —s6 00 0 c)

(=)
o
)
=)
©c © © ©
=)
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where ¢; = cos(jn/13) and s; = sin(j7/13),

1 00-20-2-2

0 cd 0O0e 0 O
0de 0 ¢c 0O O

1 200 0 01

n=—1| - U v w | « ;

V13 -10
0 ec d 0 0
200 v 0 w wu
200 w 0 u v/

where

¢ = 1(=7 + /13 + 8 cos(2r/13) + 4(3 — v/13) cos?(2r /13)),
d = Y(=7 + V13 + 8cos(87/13) + 4(3 — \/13) cos¥(87/13)),
e = L(=7 4+ V13 + 8cos(67/13) + 4(3 — V/13) cos?(67/13)),
u= =(c+ 2~ 2d),

v = ﬁ(e+2d—26),

w= ——\/11——3(d+20— 2e).

Note that in [CoW 83] there are some misprints: 13 — \/ﬁ should be 3 — v/13 and
cos(a) should be 2 cos(e) in ¢, d, and e.

Now R = Z[3—‘|32@] is the ring of all integers in K = Q(+/13). The first (and
main) problem is to find a K -form Cx of C'. The above data can be interpreted as an
F-G-form Cr of C (isomorphic to FC’& as F-algebra), where F' := Q((s2+ Cg‘zl )=
Q(sin(27 /13)) with (s = exp(27i/52). The Galois descent from C'r to Ck can
be performed roughly as follows. Let (Vr)k be the K G-module obtained from
the F'G-module Vr (of dimension 7 over F’) by restricting scalars to K, so in
particular dimg (Vr)g = 7 -6 and E := Endke((Vr)k) = K®%6. From the way
(VE)Kk is given, one obtains F' as a maximal subfield of E and can therefore easily
construct E as a crossed product algebra of F' with Gal(F/K) = Cs. As a result
of this, a parametrization of all simple K G-submodules W of (VF)x ensues. One
readily finds a W with W - W C Key @ W, which therefore yields the unique
K-G-form Cx = Keg ® W. To be explicit, W = Vi can be chosen as Ae; - KG
with A = 13s — 64s3 + 83s° — 4557 + 115° — s!!, where s = sin(27/13) (in
particular A2 = iﬂ_g‘—”). To prove Cx & K ®q Cg it suffices to check that the
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norm forms are equivalent by [vdBS 59] pg. 410. Again by the result of [vdBS 59]
on composition algebras over complete discrete valuation rings and the local-global
principle for quadratic forms over number fields, cf. [Sch 85] Cor. 6.6, it suffices
to check that the norm form of C'x is totally positive definite, cf. also [Spr 63].

Up to isomorphism, there are two RG-lattices M) and M, in V. The quotients
M, /M, and M,/2M; represent nonisomorphic F4G-modules of dimension 1 and
6, respectively. M is as RG'-lattice generated by %/\el, where A is as above. M
is as RG-lattice generated by 75(A2e2 + Azes + Ases), Ay = 6552 — 169s* +
13056 — 3958 + 4510, A3 = 13 — 117s% + 143s* — 6555 4 1353 — 510, )5 =
52 — 28652 4 364s* — 18235 + 395% — 3519, where s = sin(27/13) is as above
(M2A3hs = —169A2).

One computes M - M = 1Rey & %Mz and M := M- M, = %Reo ,{SMl,
with S 2pqg (%R) /R =pg Mi/M,. Observe that M is multiplicatively closed,
whereas the multiplicative closure of the superlattice M; of M, is no longer a
lattice in C';. As in the case G = PSL(2, 8) one obtains that M/ = L is the unique
Cayley order for PSL(2, 13) and the invertible elements in L are the elements in
R*eo.

Though everything in the above description of Vi is explicit, it is often more
convenient to describe Vi with respect to a basis more adjusted to G. The matrices

of G are monomial with respect to the Q-basis (vy,...,v14) of Vg where v; =

Z}zl a;;e; and
( 13X 0 0 0 O 0 0
VI3A 0 0 -2V13X 0 -2V13) -2V/13)
VI3A a1 e a3 g as o
VI3A A3 A ar  As ag ag
VI3A  a oy ag Qg a3 as
V13X —ay —oy as —op g 3
VI3A s A3 ag Ay ay az

(a) = V13X A2 s ag A3 az ag

V13X =Xy =As ag —A3 ag ag
V13X =Xs A3 ag —Az ag az
VI3A as o as  ap ag as
V13X —a; —a4 0 —aq a3 as
V13X =Xz =X a7 —As ag ag
V13X —a1 —ay o3 —ay as Y,



CAYLEY ORDERS 73

Here A, Az, A3, and s are as above, and
a1 = 39 — 260s% + 416s* — 27355 + 785° — 85'°,
az = 13— 91s% + 525* + 135° — 1358 + 257,
a3 = —78s + 364> — 4425° + 22157 — 495° + 4s'!,
ay = —ap —ap — 13,
as = 26s — 915> + 78s° — 267 + 3s°,
ag = —265 + 785% — 78s° + 395" — 105’ + ',
a7 = 135 +265° — 395 + 165° — 25!,
ag = 39s — 273s% 4+ 390s% — 22157 + 555° — 5s',
and
Qg = 39s — 208s> + 2215° — 91s” + 16s° — s!!,

where s = sin(27/13) is as above.
With respect to the Q-basis (vy, .. ., v14) of Vi one has

a = —I14P14((3,12,11,14,5,6)(4,9,7,13,8,10)),
k = P4((2,3,4,5,6,7,8,9,10,11,12,13, 14)),
and
n = diag(I3, -1, I, —Is, [, —1,1)Pi4((1,2)(3,14)(4,8)(5,6)(9,13)(11, 12)).

The element in the commuting algebra of G corresponding to +/13 is (a,-j)zlg-zl,
where

0 ifi=j
ai;j=1{ -1 ifi=1orj=1lorl|i-j|€{1,3,4,9,10,12}

1 otherwise



74

ARJEH M. COHEN ET AL.

References

[CoW 83]

[CoW 94]

[Cox 46]
[Dic 23]

[Gri 94]

[HoP 89]
[JLPW 94]

[Reh 94]

[Sch 85]
[Slo 93]

[Spr 63]
[vdBS 59]

[Wei 64]

Cohen, A. M. and Wales, D. B.: Finite subgroups of G2(C), Comm. Algebra, 11 (1983)
441-459.

Cohen, A. M. and Wales, D. B.: Finite simple subgroups of semisimple complex Lie
groups — a survey, pp. 77-96 in “Groups of Lie type and their geometries”, eds. W. M.
Kantor and L. Di Martino, LMS Lecture Notes, no. 207, Cambridge University Press,
1995.

Coxeter, H. S. M.: Integral Cayley Numbers, Duke Math. J. 13 (1946) 561-578.
Dickson, L. E.: A new simple theory of hypercomplex integers, Journal de
Mathématiques Pures et Appliquées (9), Vol. 2 (1923), 281-326.

Griess, Jr., R. L.: Basic Conjugacy Theorems for G2, Preprint 1994, University of
Michigan, Ann Arbor.

Holt, D. F. and Plesken, W.: Perfect Groups, Oxford University Press 1989.

Jansen, C., Lux, K., Parker, R. A. and Wilson, R. A.: An Atlas of Brauer Characters. In
preparation.

Rehm, H. P.: Prime factorization of integral Cayley octaves, Annales de la Faculté des
Sciences de Toulouse, Vol. 11, no. 2, (1993) 271-289.

Scharlau, W.: Quadratic and Hermitian Forms, Springer-Verlag, 1985.

Slodowy, P.: Two notes on a finiteness problem in the representation theory of finite
groups, Hamburger Beitrdge zur Mathematik, Heft 21, 1993, Universitit Hamburg.
Springer, T. A.: Oktaven, Jordan-Algebren und Ausnahmegruppen, Lecture Notes,
Gottingen 1963.

van der Blij, F. and Springer, T. A.: The arithmetics of octaves and of the group G,
Proc. Nederl. Akad. Wet. (1959) 406—418.

Weil, A.: Remarks on the cohomology of groups, Annals of Math. 80 (1964) 149-157.



