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1. Introduction

Let G be a finite subgroup of a real simple Lie group A. Then, viewing A as the
real points of a simple algebraic group defined over R and using a result of Weil
(cf. [Wei 64], [Slo 93], [CoW 94]), we can find a number field K and a K-form
Ah of A so that G is conjugate in A to a subgroup of the group AK(K) of the
I( -rational points of AK -

If A is compact of type G2, then A is known to be the automorphism group
Aut( C ) of the real Cayley division ring C. In line with the above result, one might
expect, for a finite subgroup G of A, a K-form CK of C into whose automorphism
group G embeds. Such a form Cx will be called a K-G-form (see below for a
precise definition). Pushing it even further, one may ask for an RG-invariant order
in CK, where R is the ring of integers in 1(.

In [CoW 83], the finite subgroups of G2(C), resp. Aut(C), are described. The
maximal finite ones that are not contained in a proper closed Lie subgroup (of nonze-
ro dimension) are isomorphic to 23 GL(3, 2), G2(2), PSL(2, 8), or PSL(2, 13) (one
conjugacy class for each isomorphism type, see [Gri 94]). Viewed as subgroups of
GL(C , they have unique minimal splitting fields Il, namely Q, Q, Q(cos(27r/9»,Q(B/13) in the respective cases. It tums out that there is a unique K -form CK with
G  Aut(CK).

Passing to the arithmetic of the situation, call a full Z-lattice L in CK a Cayley
order for G, if

(i) L is multiplicatively closed;
(ii) L is G-invariant;
(iii) L is maximal with (i) and (ii).

GENERAL LEMMA. Let L be a Cayley order in Ch for G. Then L is an R-lattice
containing the unit element eo = 1 of CK.

Proof. Consider the full Z-lattice generated by RL and Reo. It is a Cayley order
for G again and contains L, so must coincide with L. 0
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Remark. Let cg be the usual Cayley division algebra over Q (see section 2
below). A Cayley order in cg for the trivial group is a set of integral elements in
the sense of [Dic 23], pp. 141-142; see also properties (i)-(iv) listed in [Cox 46].

In [Cox 46], Coxeter pointed out a Cayley order for the trivial group with
Iî = Q, which also is a Cayley order for G2(2). In [vdBS 59], it is shown that
this Cayley order is unique up to isomorphism for the trivial group in cg. This
Cayley order is known to have 240 invertible elements. Its number theory has been
investigated in [Reh 94].

The main result of this paper, which uses computer calculations as described in
Section 4.2.2 of [HoP 89], contends that for all four maximal finite closed subgroups
there are unique Cayley orders. But the Cayley orders for the three groups G2(2)
are less interesting in the sense that no surprising invertible elements are found to
occur except for some well-known ones for 23 - GL(3, 2). For instance the Cayley
order for the latter group is spanned by the usual monomial basis eo,..., e7 (see
below) and 2 1 (eo + ... + e7) ; its invertible elements are ::l:ei for i = 0,..., 7.

THEOREM. Let G be a subgroup of Aut(C) isomorphic to one of 23 - GL(3, 2),
G2 (2), PSL(2, 8), and PSL(2, 13), and let K = Q, Q, Q(2cos(21r 19)), Q( VU)
in the respective cases. Then there is a unique K-G-form CK of C on which G acts.
Moreover, inside CK there is a unique Cayley order for G. In the latter two cases,
all of their invertible elements are contained in the units of R, the ring of integers
of K (via the identification of R - eo with R, where eo is the identity element of C).

2. Preliminaries

We first recall an explicit construction of the real Cayley division ring C. As a
vector space, C is 8-dimensional over R with basis (ei 1 i = 0, ... , 7) (the nonzero
indices will be taken mod 7 with values in 1, ... , 7). With respect to this basis the

multiplication is given by

We dénote by cg the Q-subalgebraofC with Q-basis eo,..., e7. By (’,’) we denote
the standard inner product with respect to this basis. A characteristic property of C
is that the corresponding quadratic form N with N(x) :_ (x, x) is multiplicative,
i.e., N(xy) = N(x)N(y) for all x, y E C. Moreover this inner product defines
an involution - : C - C, X  2(x, eo)eo - x. Then (x, y)eo = !(xy + yx) ==
(xy, eo)eo for all x, y e C.

Let r : C --&#x3E; C be the orthogonal projection onto Reo = FixC(-) and 1r’ :=
id - 7r. Then 1r(x) = !(x + x) _ (x, eo)eo and 7r’(x) = 2(x - x) for all x e C.
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Note C = Reo ? V with V = (ei,..., e7)g = 7r’(C), the orthogonal complement
of Reo in C.

Let G be a finite subgroup of Aut(C). Call a Ii(-subspace CK of C a K-G-form
of C, if

(i) Ch has a K-basis which is an R-basis of C;
(ii) Ck is a K-subalgebra of C;
(iii) G acts on CK by K-algebra automorphisms.

Denote the orthogonal complement (with respect to N) of Keo in CK by VK.
Thus, for example, cg is a K-1-form of C and VQ = (el,..., e7 )Q.
For the proof of the next lemma one needs the following

MULTIPLICATION FORMULA. rl(x 1r’(x . y» (x, y)x - (z , z )y for all
x, y E V.

Proof. Let x, y E V. Then using the fact that 1r’ (z) == z - (z, eo)ep for all z E C,
onegets 1r’( x .1r’( x.y)) == x (x y) - (x y, eo) x - (x (x y), eo) eo + (x y, eo)(x, eo)eo (*).
Since x, y E V one has (y, eo) = (x, eo) = 0 and x(xy) = x2y = -N(x)y E V.
Moreover (xy, eo) == (x, y) == -(x, y). Using (*), we find 1r’(x . 1r’(x . y»
-N(x)y + (x, y)x. D

UNIQUE K-G-FORM LEMMA. Let K be a subfield of R such that G  Aut(C)
is conjugate under GL(C) to a subgroup of GL8 (K). Assume that the character of
G on C is 1 + x with x absolutely irreducible.

(a) There exists at most one K-G-form CK of C.
(b) If X satisfies (x2-, X) = 1 (where x2- denotes the character of G on the

skewsymmetric part A 2 V of V 0 V), then there exists a K-G-form CK of C.
Proof.

(a) Let CK, CK be I( -G-forms of C. Clearly CK = Keo OE) VK, with VK a simple
KG-submodule of V (the orthogonal complement of Reo in C). Similarly
Ch - Keo ED Vh-. By absolute irreducibility there exists a À E R with
Vk == À V K, because a KG-isomorphism from VK to Vx- extends uniquely
to an RG-isomorphismofV. Choose vl, V2 E VK with vlvz = aeo + w and
0 fl w E VK. Then Avl AV2 = À2aeo + À(Àw). Since Àw E AVK = VK and
A2w e VK one concludes that À e 1(.

(b) The morphism /B2 V -+ V determined by x A y - 1r’(xy) is G-equivariant.
But, by the character condition, any such morphism is a scalar multiple of a
nonzero generator of the 1-space of G-equivariant morphisms /B2 V -+ V.
This generator is defined over VK, and so there is A E R, A 0 0, such that
1r’( xy) E À VK for all x, y E VK. Replacing VK by A - 1 VK, we find that
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But then the multiplication formula shows that N(x) E I( and (x, y) e Il for
all x, y e VK. In particular, xy = 1r’(xy) + 1r(xy) == 1r’(xy) + (xy, eo) eo E
Ii7eo + VK. We conclude that IÇ’eo + Vh is a K-G-form. D

Now, let G be one of the four maximal finite subgroups mentioned above and let
K be the minimal splitting field of the representation of G on C, resp. V. Then
G satisfies the character conditions of the unique K-G-form lemma, hence there
is a unique K-G-form in each case. Our computations show that Ch = OQ.
The latter follows immediately in the first 3 cases of G, but after some calculation
in the last case (cf. below). It can also be concluded from [Spr 63], pg. 14. This
establishes the first statement of the theorem in Section 1.

Coming to the arithmetic let L be a Cayley order for G in CK. Then, as a I( G-
module, KL is isomorphic to Ileo e VK where VK = (el,..., e7)K is a simple
K G-module of dimension 7. Set L1 := L n VK and L’ r’(L). Then LI and L’
are RG-lattices in VK by the General Lemma.

NORM LEMMA. For any x E L we have N(x) E R and x = 2(x, eo)eo - x e L.
Proof. For x E L consider left multiplication with x. Its characteristic polyno-

mial lies in R[t], since xL C L. On the other hand x is a root of the quadratic
polynomial t2 - 2(eo, x)t + N(x) which must therefore divide the characteris-
tic polynomial and hence lies in R[t]. The first part follows from a look at the
constant term. The linear term gives 2(x, eo) e R, so, by the General Lemma,
2(x, eo)eo E L, whence x e L. 0

COROLLARY. Either L = Reo e LI or Reo e L1 c L c §Reo e L’ with
L’IL1 1RIR and 2(L,,L’) C R.

Proof. Since R D 2(eo, L) = 2(eo, 7r(L» one has x (L) ç ! R. Since 2R is a
maximal ideal of R, there are only two possibilities: 7r(L) = R or x (L) 1 R.
Moreover 2(L1, Li) = 2(L1, L) C R. 1:1

For all four groups G it tums out that the second possibility occurs, i.e., L is a
subdirect product of !Reo and L’ amalgamated over the common factor module
!RIR c--- L’I IL, c---- F2n with n = [I( : Q] on which G acts trivially. For the prime
ideals p of R not containing 2 the above corollary has an important consequence.

ODD PRIME LEMMA. Let p be a prime ideal of R not dividing 2. Then the P-adic
completion Lp of L is given by Rpeo EB (LI)p where (LI), is the unique RpG-
sublattice X of K 0K VK with X = X#:= {x E I(p 0K VK  (X, x) C Rpl.

Proof. From the decomposition numbers, cf. [JLPW 94], one immediately sees
that XI pX is a simple R/G-module in all four cases. Therefore the set of RtG-
lattices in A"p 0K VK forms a chain of the kind ... D p-lx D X 2 Px :) - - ..
Our later constructions show that there is an RG-lattice Y in Vh such that
Y . Y C Reo EB Y and [y# : Y] is a 2-power, where y# :== {x E VK 1 (Y, x) C R}.
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(For instance 2L, satisfies these requirements.) Hence there is exactly one R,G-
lattice X in Kt, (DK YK satisfying X = X#. Moreover X - X C Rpeo e X. 0

This lemma leaves only the prime 2 to be investigated. There the lattice of RG-
lattices in Yh is more complicated. It can however be computed by the method
described in [HoP 89] pg. 105, which runs roughly as follows: Let M be any full
RG-lattice in Yh and M’ be a maximal RG-sublattice of M. Then M/M’ is a
simple (R/pR)G-module for some prime p in R, hence M’ is the kemel of an
epimorphism M - S for some simple (R/pR)G-module S.

The remainder of this paper is devoted to this investigation and hence a case by
case proof of the second part of the theorem in Section 1.

The final point of this section concems the notation for matrices: they act from
the right; diag(A 1, ... , An) denotes the block diagonal matrix with A 1, ... , An on
the (block-)diagonal; for a permutation in the symmetric group Sn usually given
in disjoint cycle notation, Pn( 7r) denotes the n x n-permutation matrix whôse
(i, j)-entry is 1 if ix = j and 0 otherwise.

3. The case G = 23 . GL(3, 2)
Here K = Q and R = Z. With respect to the basis ( e 1, ... , e7) of VK, the group G
is generated by the following two matrices:

diag( 1, 1, 1, - 1, - 1, 1, 1) . P7 ( ( 1 , 2) ( 3, 6) ) ,
and P7((I,2,3,4,5,6,7)) (cf. [Cox 46]).

Thus we can take VK = EDL,Qei. Up to isomorphism (i.e., up to multiplication
with elements ofQ*) there are five ZG-lattices Mi,..., M5 in VK. Representatives
can be chosen as follows

!MIIM2, M2/M4, and M4/Mi are nonisomorphic simple 1F2G-modules of
dimensions 1, 3, 3, respectively. One has MI - Mi = Zeo CD Ml, but (Ml, 11 (eo +
... + e7)) is still multiplicatively closed, whereas M4 - M4 = !Zeo JS! Ml is the
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subdirect product of 1 MI and !Zeo amalgamated over the common factor module
S - !MIIM2  iZeo/Zeo and M5 - M5 = !Z ® M2. Since the multiplicative
closures of the lattices M4 and M5 are no longer lattices, one has that, as a Z-lattice,
the unique Cayley order for G is generated by eo,..., e7 and 1(eo + ... + e7).

4. The case G = G2 (2)

Again K = Q and R = Z. With respect to the basis ( e 1, ... , e7) of Yx, the group
G is generated by the two matrices

Thus we can take VK = EBI=1 Qei. Up to isomorphism (i.e., up to multiplication
with elements ofQ*) there are two ZG-lattices Mi and M2 in VK. Representatives
canbechosenasfollows:Mi = (el , e2, e3, e6, !(el+e2+es+e6), !(e2+e3+
e6 + e7), !(el + e2 + e3 + e4))Z, M2 = (2Mi, e3 + e4 + e6). Both Mi/M2 and
M2/2Mi are simple IF2G-modules of dimensions 6 and 1, respectively. One has
M2.M2 = ;leoEBM2,andMI.MI = (eo, en e2, e3, !(eo+e3+e4+e6), !(el +
e2 + es + e6), § (e2 + e3 + e6 + e7 ) , § (e l + e2 + e3 + e4 ))Z ÉÉ !ÍZeo AS !M2 is the
subdirect product of ! ÍZeo and ! M2 amalgamated over the common factor module
S ÉÉ §M2 /Mi ÉÉ §Zeo/Zeo. Since Ml . Mi is multiplicatively closed, it is the
unique Cayley order for G.

5. The case G = PSL(2, 8)

Now R = ÍZ[w], where w3 - 3w + 1 = 0, is the ring of all integers in li =
Q( w) == Q(cos(27r/9)). With respect to the basis (el, ... , e7) of VK, the group G
is generated by the following three matrices
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diag(

Here a := 3 - w - w2, b := -2 + w2 and c := 20131 2013 w. Again we can take
VK = q)7lKei. The 2 x 2-matrices added indicate a correspondence with the
usual presentation of PSL(2, 8) over IF2 [w]. Note that (el,..., e7)R is not an RG-
lattice in V K .

Up to isomorphism (i.e., up to multiplication with elements of K*) there are
four RG-lattices Ml , ... , M4 in VK. Representatives can be chosen as follows

Mi /M2, Mi /M3, and M4 /2Mi represent nonisomorphic simple IFg G-modules
of dimensions 1, 4, 2, respectively.
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One has Mi . Mi = (Reo Q9 Ml , M2 . M2 = 4 Reo e 1 M3, where S ’=
Reo/ 1 Reo § M3 / § M4 , M3 . M3 = 1 Reo ED lM4 and M4 - M4 !Reo ;SM3,
where S c- !Reo/Reo c-’- M3/M4. It follows that L = M4 - M4 is the unique
Cayley order for PSL(2, 8).

Invertible elements of L have invertible norms lying in R. Being interested
in which invertible values from R the Cayley norm takes, we compute modulo
squares, as they are the norms of elements from R themselves. Modulo squares we
have R*I(R* ) 2 c-- (Z/2Z)3. So there are 8 invertible values modulo squares of R*.
They correspond to the 8 different sign patterns for the 3 real embeddings. But the
norm values must be positive in each embedding, and so only the class of 1 e R*
occurs as a norm value. The elements of L of norm 1 are precisely feo.

6. The case G = PSL(2,13)

We recall from [CoW 83] the following three elements of Aut(C) generating a
subgroup G isomorphic to PSL(2, 13). The action is written with respect to the
basis el, ... , e7 of V. The 2 x 2 matrices added indicate a correspondence with the
usual presentation of PSL(2, 13).
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where Cj = cos( jx / 1 3) and sj = sin(j7r/13),

where

Note that in [CoW 83] there are some misprints: 13 2013 B/13 should be 3 - -%/1-3 and
cos(a) should be 2 cos(a) in c, d, and e.

Now R = ÍZ[¥] is the ring of all integers in K = Q( 03). The first (and
main) problem is to find a K-form Ch of C. The above data can be interpreted as an

F-G-form CF of C (isomorphic to FCO as F-algebra), where F : - (Q «52+ (21 ) =
Q(sin(21r/I3)) with (52 = exp(27ri/52). The Galois descent from CF to CK can
be performed roughly as follows. Let (VF)K be the I(G-module obtained from
the FG-module VF (of dimension 7 over F) by restricting scalars to K, so in
panicular diMK (VF) K = 7 - 6 and E := EndKG «VF) K) -- K6 x 6. From the way
(VF)h is given, one obtains F as a maximal subfield of E and can therefore easily
construct E as a crossed product algebra of F with Gal(FIK) C--- C6. As a result
of this, a parametrization of all simple I( G -submodules W of (VF)K ensues. One
readily finds a W with W - W C Keo (D W, which therefore yields the unique
K-G-form Cx = Ileo e W. To be explicit, W = VK can be chosen as Àel KG
with À = 13s - 64s3 + 83s5 - 4587 + IIs9 - sll, where s = sin(27r/13) (in
particular A2 = 34-13). To prove CK  K @Q cg it suffices to check that the
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norm forms are equivalent by [vdBS 59] pg. 410. Again by the result of [vdBS 59]
on composition algebras over complete discrete valuation rings and the local-global
principle for quadratic forms over number fields, cf. [Sch 85] Cor. 6.6, it suffices
to check that the norm form of CK is totally positive definite, cf. also [Spr 63].

Up to isomorphism, there are two RG-lattices Mi and M2 in V K. The quotients
MIl M2 and M2/2M1 represent nonisomorphic IF4G-modules of dimension 1 and
6, respectively. Mi is as RG-lattice generated by !Ael, where À is as above. M2
is as RG-lattice generated by l3(À2e2 + À3e3 + À5e5), À2 = 65s2 - 169s4 +
130s6 - 39sg + 4s’o, A3 = 13 - 117s2 + 143s4 - 65s6 + 13s8 - s10, Às =
52 - 286s2 + 364s4 - 182s6 + 39s8 - 3s1°, where s = sin(21r 113) is as above
(Â2Â3À5 = -169À2).

One computes Ml Mi = 1/4 Reo E8 1 M2 and M := M2 . M2 = 1/2 Reo ÀSMI,
with S EÉ RG (! R) 1 R  RG Mi /M2. Observe that M is multiplicatively closed,
whereas the multiplicative closure of the superlattice Mi of M2 is no longer a
lattice in CK. As in the case G = PSL(2, 8) one obtains that M = L is the unique
Cayley order for PSL( 2,13 ) and the invertible elements in L are the éléments in
R*eo. 

Though everything in the above description of Yk is explicit, it is often more
convenient to describe Yk with respect to a basis more adjusted to G. The matrices
of G are monomial with respect to the Q-basis (VI, V14) of V K where vi =

r7 =1 aijej and
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Here À, À2, À3 , and A5 are as above, and

and

where s = sin(27r/13) is as above.
With respect to the Q-basis (v 1, ... , v14) of Vh one has

and

The element in the commuting algebra of G corresponding to ,fl--3 is (aij )I,}=l’
where 

otherwise
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