@article{CM_1996__101_1_55_0,
author = {Vaisman, Izu},
title = {Complementary 2-forms of {Poisson} structures},
journal = {Compositio Mathematica},
pages = {55--75},
year = {1996},
publisher = {Kluwer Academic Publishers},
volume = {101},
number = {1},
mrnumber = {1390832},
zbl = {0853.58056},
language = {en},
url = {https://www.numdam.org/item/CM_1996__101_1_55_0/}
}
Vaisman, Izu. Complementary 2-forms of Poisson structures. Compositio Mathematica, Tome 101 (1996) no. 1, pp. 55-75. https://www.numdam.org/item/CM_1996__101_1_55_0/
1 : Variétés différentiables et analytiques. Paris, Hermann, 1971. | MR
2 -L.: A differential complex for Poisson manifolds. J. Diff. Geometry. 28 (1988) 93-114. | Zbl | MR
3 and : The Schouten bracket and Hamiltonian operators. Funkt. Anal. Prilozhen. 14 (3) (1980) 71-74. | Zbl | MR
4 and : Hamiltonian operators and the classical Yang-Baxter equation. Funkt. Anal. Prilozhen. 16 (4) (1982) 1-9. | Zbl | MR
5 : Differential Geometry, Lie groups and symmetric spaces. Academic Press, New York, 1978. | Zbl | MR
6 : The modified Yang-Baxter equation and bihamiltonian structures. Proc. XVIIth Int. Conf. on Diff. Geom. Methods in Theoretical Physics, Chester 1988 (A. Solomon, ed.), World Scientific, Singapore, 1989, 12-25. | MR
7 and : Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré, série A (Physique théorique). 53 (1990) 35-81. | Zbl | MR | Numdam
8 : Crochet de Schouten-Nijenhuis et cohomologie. In: É. Cartan et les mathématiques d'aujourd'hui. Soc. Math. de France, Astérisque, hors série, 1985, 257-271. | Zbl | MR | Numdam
9 : Sur le problème d'équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl. 36 (1954) 27-120. | Zbl | MR
10 : Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geometry, 12 (1977) 253-300. | Zbl | MR
11 : Lie groupoids and Lie algebroids in differential geometry. London Math. Soc. Lecture Notes Series 124, Cambridge Univ. Press, Cambridge, 1987. | Zbl | MR
12 and : A geometrical characterization of integrable Hamiltonian Systems through the theory of Poisson- Nijenhuis manifolds. Quaderno S. Univ. of Milan, 19 (1984).
13 : Some simple examples of symplectic manifolds. Proc. American Math. Soc. 55 (1976) 467-468. | Zbl | MR
14 : Cohomology and differential forms. M. Dekker, Inc., New York, 1973. | Zbl | MR
15 : Lectures on the geometry of Poisson manifolds. Progress in Math. Series, 118, Birkhäuser, Basel, 1994. | Zbl | MR
16 : The Poisson-Nijenhuis manifolds revisited. Rendiconti Sem. Mat. Torino, 52 (1994). | Zbl | MR
17 : Introduction à l'étude des variétés Kähleriennes. Hermann, Paris, 1971. | Zbl
18 : The local structure of Poisson manifolds. J. Diff. Geometry. 18 (1983) 523-557. | Zbl | MR





