@article{CM_1995__99_2_153_0,
author = {Bertolini, Massimo},
title = {Selmer groups and {Heegner} points in anticyclotomic $\mathbb {Z}_p$-extensions},
journal = {Compositio Mathematica},
pages = {153--182},
year = {1995},
publisher = {Kluwer Academic Publishers},
volume = {99},
number = {2},
mrnumber = {1351834},
zbl = {0862.11043},
language = {en},
url = {https://www.numdam.org/item/CM_1995__99_2_153_0/}
}
TY - JOUR
AU - Bertolini, Massimo
TI - Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions
JO - Compositio Mathematica
PY - 1995
SP - 153
EP - 182
VL - 99
IS - 2
PB - Kluwer Academic Publishers
UR - https://www.numdam.org/item/CM_1995__99_2_153_0/
LA - en
ID - CM_1995__99_2_153_0
ER -
Bertolini, Massimo. Selmer groups and Heegner points in anticyclotomic $\mathbb {Z}_p$-extensions. Compositio Mathematica, Tome 99 (1995) no. 2, pp. 153-182. https://www.numdam.org/item/CM_1995__99_2_153_0/
1 : Iwasawa Theory, L-functions and Heegner Points, PhD Thesis, Columbia University, 1992.
2 and : Kolyvagin's descent and Mordell-Weil groups over ring class fields, J. für die Reine und Angewandte Mathematik 412 (1990), 63-74. | Zbl | MR
3 and : Derived heights and generalized Mazur-Tate regulators, Duke Math. J. 76 (1994), 75-111. | Zbl | MR
4 and : Derived p-adic heights, submitted.
5 : Algèbre Commutative, Ch.7, Diviseurs, Hermann et Co., Paris, 1965. | Zbl | MR
6 : Refined Class Number Formulas and Derivatives of L-functions, PhD Thesis, Harvard University, 1991.
7 and : Algebraic Number Theory, Academic Press, New York, 1969. | Zbl | MR
8 : Kolyvagin's work on modular elliptic curves, in L-functions and Arithmetic, Cambridge University Press, Cambridge, 1991, pp. 235-256. | Zbl | MR
9 and : Heegner points and derivatives of L-series, Inventiones Math. 84 (1986), 225-320. | Zbl | MR
10 : Euler Systems, The Grothendieck Festschrift, vol. 2, Progr. in Math. 87, Birkhäuser, 1990, pp. 435-483. | Zbl | MR
11 : Algebra, 2nd edn, Addison Wesley, 1984. | Zbl
12 : Modular Curves and Arithmetic, Proc. Int. Congress of Math., Warszawa, 1983. | Zbl
13 : Rational points of Abelian Varieties with values in towers of number fields, Inventiones Math. 18 (1972), 183-266. | Zbl | MR
14 : Cyclotomic fields and modular curves. Engl. transl.: Russian Math. Surveys 26 (1971), 7-78. | Zbl | MR
15 : Arithmetic duality theorems, in Perspective in Math., Academic Press, New York, 1986. | Zbl | MR
16 : Fonctions L p-adiques, Théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. de France 115 (1987), 399-456. | Zbl | MR | Numdam
17 : Points de Heegner et derivées de fonctions L p-adiques, Inventiones Math. 89 (1987), 455-510. | Zbl | MR
18 : On L-functions of elliptic curves and anti-cyclotomic towers, Inventiones Math. 64 (1984), 383-408. | Zbl | MR
19 : The Main Conjecture, Appendix in S. Lang, Cyclotomic fields, I and II, GTM 121, Springer-Verlag, 1990. | Zbl
20 : The "main conjectures" of Iwasawa theory for imaginary quadratic fields, Inventiones Math. 103 (1991), 25-68. | Zbl | MR
21 : Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Inventiones Math. 15 (1972), 259-331. | Zbl | MR
22 : Abelian l-adic Representations and Elliptic Curves, Advanced Book Classics, Addison Wesley, 1989. | Zbl | MR
23 : WC-groups over p-adic Fields, Séminaire Bourbaki no. 156, 1957. | Zbl | MR | Numdam
24 : Duality theorems in Galois cohomology over number fields, in Proc. Int. Congress of Math., Stockholm, 1962, pp. 288-295. | Zbl | MR






