@article{CM_1995__97_1-2_71_0,
author = {Goldfeld, Dorian and Szpiro, Lucien},
title = {Bounds for the order of the {Tate-Shafarevich} group},
journal = {Compositio Mathematica},
pages = {71--87},
year = {1995},
publisher = {Kluwer Academic Publishers},
volume = {97},
number = {1-2},
mrnumber = {1355118},
zbl = {0860.11032},
language = {en},
url = {https://www.numdam.org/item/CM_1995__97_1-2_71_0/}
}
TY - JOUR AU - Goldfeld, Dorian AU - Szpiro, Lucien TI - Bounds for the order of the Tate-Shafarevich group JO - Compositio Mathematica PY - 1995 SP - 71 EP - 87 VL - 97 IS - 1-2 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1995__97_1-2_71_0/ LA - en ID - CM_1995__97_1-2_71_0 ER -
Goldfeld, Dorian; Szpiro, Lucien. Bounds for the order of the Tate-Shafarevich group. Compositio Mathematica, Tome 97 (1995) no. 1-2, pp. 71-87. https://www.numdam.org/item/CM_1995__97_1-2_71_0/
1 and : Elliptic curves and modular functions, in Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer-Verlag, 1975, pp. 2-32. | MR
2 : The average rank of elliptic curves I, Invent. Math. 109 (1992), 445-472. | Zbl | MR
3 : La conjecture de Weil 1, Publ. Math. IHES 43 (1974), 273-307. | Zbl | MR | Numdam
4 and : Points de torsion des courbes elliptiques, in L. Szpiro (ed.), Pinceaux de Courbes Elliptiques, Asterisque 183 (1990), 25-36. | Zbl | Numdam
5 : Modular elliptic curves and diophantine problems, in Number Theory, Proc. Conf. of the Canad. Number Theory Assoc., Banff, C Alberta, Canada, 1988, pp. 157-176. | Zbl | MR
6 : Kolyvagin's work on elliptic curves, in L-functions and Arithmetic, Proc. of the Durham Symp., 1989, pp. 235-256. | Zbl | MR
7 and : The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419-450. | Zbl | MR
8 : Finiteness of E(Q) and III(E/Q) for a class of Weil curves, Izv. Akad. Nauk SSSR 52 (1988). | Zbl
9 and : Values of L-series of modular forms at the centre of the critical strip, Invent. Math. 64 (1981), 175-198. | Zbl | MR
10 : Conjectured diophantine estimates on elliptic curves, in Arithmetic and Geometry, Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday, Vol. I, Arithmetic, Birkhäuser, 1983, pp. 155-172. | Zbl | MR
11 : Modular curves and the Eisenstein ideal, IHES Publ. Math. 47 (1977), 33-186. | Zbl | MR | Numdam
12 : On a conjecture of Artin and Tate, Annals of Math. 102 (1975), 517-533. | Zbl | MR
13 and : Discriminant et conducteur des courbes elliptiques non semi-stable, à paraitre.
14 : Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 64 (1981), 455-470. | Zbl | MR
15 : The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-Verlag, 1986. | Zbl | MR
16 : Propriétés numériques du faisceau dualisant relatif, in Pinceaux de Courbes de Genre au Moins Deux, Asterisque 86 (1981), 44-78. | Zbl
17 : Discriminant et conducteur, in Seminaire sur les Pinceaux de Courbes Elliptiques, Asterisque 183 (1990), 7-17. | Zbl | MR | Numdam
18 : An algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular Functions of One Variable IV, Lecture Notes in Math. 476, Springer-Verlag, 1975, pp. 33-52. | MR
19 : On a conjecture of Birch and Swinnerton-Dyer and a geometric analogue, Seminaire N. Bourbaki, Exposé 306, 1966. | Zbl | Numdam
20 and : Ring theoretic properties of certain Hecke algebras, to appear. | Zbl
21 : The Theory of Functions, 2nd edn., Oxford University Press, Oxford, 1939. | JFM
22 : On the conjectures of Mordell and Lang in positive characteristic, Inventiones Math. 104 (1991), 643-646. | Zbl | MR
23 : Basic Number Theory, Springer-Verlag, 1967. | Zbl | MR
24 : Modular elliptic curves and Fermat's last theorem, to appear. | Zbl






