@article{CM_1995__97_1-2_295_0,
author = {Stroeker, R. J.},
title = {On the sum of consecutive cubes being a perfect square},
journal = {Compositio Mathematica},
pages = {295--307},
year = {1995},
publisher = {Kluwer Academic Publishers},
volume = {97},
number = {1-2},
mrnumber = {1355130},
zbl = {0837.11012},
language = {en},
url = {https://www.numdam.org/item/CM_1995__97_1-2_295_0/}
}
Stroeker, R. J. On the sum of consecutive cubes being a perfect square. Compositio Mathematica, Tome 97 (1995) no. 1-2, pp. 295-307. https://www.numdam.org/item/CM_1995__97_1-2_295_0/
1 and : Notes on elliptic curves I, Crelle 212, Heft 1/2 (1963) 7-25. | Zbl | MR
2 : On the Equation Y2 = X(X2 + p), in: "Number Theory and Applications " (R. A. Mollin, ed.), Kluwer, Dordrecht, 1989,3-23. | Zbl | MR
3 and : On the Equation Y2 = X(X2 + p), Math. Comp. 42 (1984) 257-264. | Zbl | MR
4 : A Diophantine Equation, Glasgow Math. J. 27 (1985) 11-18. | Zbl | MR
5 : "Algorithms for Modular Elliptic Curves", Cambridge University Press, 1992. | Zbl | MR
6 : Minorations de formes linéaires de logarithmes elliptiques, Publ. Math. de l'Un. Pierre et Marie Curie no. 106, Problèmes diophantiens 1991-1992, exposé no. 3.
7 : "History of the Theory of Numbers", Vol. II: "Diophantine Analysis", Chelsea Publ. Co. 1971 (first published in 1919 by the Carnegie Institute of Washington, nr. 256). | MR | JFM
8 , and : Computing Integral Points on Elliptic Curves, Acta Arithm., 68 (2) (1994) 171-192. | Zbl | MR
9 : "Elliptic Curves", Math. Notes 40, Princeton University Press, 1992. | Zbl | MR
10 : "Introduction to Elliptic Curves and Modular Forms", Springer-Verlag, New York etc., 1984. | Zbl | MR
11 : "The Arithmetic of Elliptic Curves", GTM 106, Springer-Verlag, New York etc., 1986. | Zbl | MR
12 : Computing Heights on Elliptic Curves, Math. Comp. 51 (1988) 339-358. | Zbl | MR
13 : The difference between the Weil height and the canonical height on elliptic curves, Mat. Comp. 55 (1990) 723-743. | Zbl | MR
14 and : "Rational Points on Elliptic Curves", UTM, Springer-Verlag, New York etc., 1992. | Zbl | MR
15 and : On the Equation Y2 = (X + p)(X2 + p2), Rocky Mountain J. Math. 24 (3) (1994) 1135-1161. | Zbl | MR
16 and : On the Application of Skolem's p-adic Method to the solution of Thue Equations, J. Number Th. 29 (2) (1988) 166-195. | Zbl | MR
17 and : Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arithm. 67 (2) (1994) 177-196. | Zbl | MR
18 and : On Elliptic Diophantine Equations that Defy Thue's Method - The Case of the Ochoa Curve, Experimental Math., to appear. | Zbl
19 : Variation of the canonical height of a point depending on a parameter, American J. Math. 105 (1983) 287-294. | Zbl | MR
20 and : On the Practical Solution of the Thue Equation, J. Number Th. 31 (2) (1989) 99-132. | Zbl | MR
21 : "Algorithms for Diophantine Equations", CWI Tract 65, Stichting Mathematisch centrum, Amsterdam 1989. | Zbl | MR
22 : Large Integral Points on Elliptic Curves, Math. Comp. 48 (1987) 425-436. | Zbl | MR





