@article{CM_1995__95_3_247_0,
author = {Schmidt, Thomas A. and Sheingorn, Mark},
title = {On the infinite volume {Hecke} surfaces},
journal = {Compositio Mathematica},
pages = {247--262},
year = {1995},
publisher = {Kluwer Academic Publishers},
volume = {95},
number = {3},
mrnumber = {1318087},
zbl = {0838.30039},
language = {en},
url = {https://www.numdam.org/item/CM_1995__95_3_247_0/}
}
Schmidt, Thomas A.; Sheingorn, Mark. On the infinite volume Hecke surfaces. Compositio Mathematica, Tome 95 (1995) no. 3, pp. 247-262. https://www.numdam.org/item/CM_1995__95_3_247_0/
[Be] , The Geometry of Discrete Groups. Graduate Texts in Mathematics 91 (New York: Springer-Verlag) 1983. | Zbl | MR
[Bu] , Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics 106 (Boston: Birkhäuser) 1992. | Zbl | MR
[C] , Rigidity for surfaces of non-positive curvatures, Comm. Math. Helv. 65 (1990) 150-169. | Zbl | MR
[CF] and , The Markoff and Lagrange Spectra, Math. Surveys and Monographs 30 (Providence: AMS) 1989. | Zbl | MR
[F] , Trace classes and quadratic forms in the modular group, Can. J. Math., to appear. | Zbl | MR
[H] , Diophantine approximation on hyperbolic Riemann surfaces, Acta Math. 156 (1986) 33-82. | Zbl | MR
[H2] , Geometric Markoff theory and a theorem of Millington, in: A. Pollington and W. Moran (eds.) Number theory with an emphasis on the Markoff Spectrum (New York: Dekker) (1993) pp. 107-112. | Zbl | MR
[H-S] and , Hurwitz constants and diophantine approximation on Hecke groups, JLMS (2) 34 (1986) 219-234. | Zbl | MR
[L] , Mostow rigidity and the Bishop-Steger dichotomy for surfaces of variable negative curvature, Duke Math. J. 68 (1992) 237-269. | Zbl | MR
[R] , A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J. 21 (1954) 549-563. | Zbl | MR
[S-S] and , Length spectra for Hecke triangle surfaces, Math. Z., to appear. | Zbl | MR
[S] , Low height Hecke triangle group geodesics, Cont. Math. 143 (1993) 545-560. | Zbl | MR
[W] , Diskrete deformation fuchsscher gruppen und ihrer automorphen formen, J. f.d.r.u.a. Math. 348 (1984) 203-220. | Zbl | MR






