@article{CM_1994__90_2_211_0,
author = {Woronowicz, S. L. and Zakrzewski, S.},
title = {Quantum deformations of the {Lorentz} group. {The} {Hopf-algebra} level},
journal = {Compositio Mathematica},
pages = {211--243},
year = {1994},
publisher = {Kluwer Academic Publishers},
volume = {90},
number = {2},
mrnumber = {1266253},
zbl = {0798.16026},
language = {en},
url = {https://www.numdam.org/item/CM_1994__90_2_211_0/}
}
TY - JOUR AU - Woronowicz, S. L. AU - Zakrzewski, S. TI - Quantum deformations of the Lorentz group. The Hopf-algebra level JO - Compositio Mathematica PY - 1994 SP - 211 EP - 243 VL - 90 IS - 2 PB - Kluwer Academic Publishers UR - https://www.numdam.org/item/CM_1994__90_2_211_0/ LA - en ID - CM_1994__90_2_211_0 ER -
Woronowicz, S. L.; Zakrzewski, S. Quantum deformations of the Lorentz group. The Hopf-algebra level. Compositio Mathematica, Tome 90 (1994) no. 2, pp. 211-243. https://www.numdam.org/item/CM_1994__90_2_211_0/
[1] and : Quantum deformation of Lorentz group, Commun. Math. Phys. 130 (1990) 381-431. | Zbl | MR
[2] and : Quantum Lorentz group having Gauss decomposition property, Publ. R.I.M.S., Kyoto University 28 (1992) 809-824. | Zbl | MR
[3] : Quantum Groups, pp. 798-820 in Proceeding of the ICM, Berkeley, 1986, AMS 1987. | Zbl | MR
[4] : Irreducible representations of the algebra of functions on the quantum SU(N) group and Schubert cells, Dokl. Akad. Nauk. SSSR 307 (1989) 41-45 (in Russian). | Zbl
[5] , Yu., and : Quantization of Lie groups and Lie algebras, Algebra i analiz 1 (1989) 178-206 (in Russian). | Zbl | MR
[6] : Quantum groups and non-commutative geometry, Pub. C.R.M. Montréal (1988). | Zbl | MR
[7] :Leçons Collége de France (1989).
[8] and : The quantum group of a non-degenerate bilinear form, Physics LettersB, Vol. 245, No. 2 (1990) 175-177. | Zbl | MR
[9] : Complex quantum groups and their real representations, Publ. R.I.M.S., Kyoto University 28 (1992) 709-745. | Zbl | MR
[10] : Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613-665. | Zbl | MR
[11] : New deformation of SL(2, C). Hopf-algebra level, Rep. Math. Phys. 30 No. 2 (1991) 259-269. | Zbl
[12] : Hopf *-algebra of polynomials on the quantum SL(2, R) for a "unitary" R-matrix, Lett. Math. Phys. 22 (1991) 287-289. | Zbl | MR
[13] : Realifications of complex quantum groups, in Groups and related topics, R. Gielerak et al. (eds.), Kluwer 1992, 83-100. | Zbl | MR
[14] : Poisson structures on the Lorentz group, preprint, Warsaw, March 1993. | Zbl





