@article{CM_1994__90_1_99_0,
author = {Van Neerven, J. M. A. M. and de Pagter, B.},
title = {The adjoint of a positive semigroup},
journal = {Compositio Mathematica},
pages = {99--118},
year = {1994},
publisher = {Kluwer Academic Publishers},
volume = {90},
number = {1},
mrnumber = {1266497},
zbl = {0812.47042},
language = {en},
url = {https://www.numdam.org/item/CM_1994__90_1_99_0/}
}
Van Neerven, J. M. A. M.; de Pagter, B. The adjoint of a positive semigroup. Compositio Mathematica, Tome 90 (1994) no. 1, pp. 99-118. https://www.numdam.org/item/CM_1994__90_1_99_0/
[AB] and , Positive Operators, Pure and Applied Math. 119, Academic Press, 1985. | Zbl | MR
[BB] , and , Semigroups of Operators and Approximation, Springer-Verlag, New York (1967). | Zbl | MR
[C1] , , , and , Perturbation theory for dual semigroups, Part I: The sun-reflexive case, Math. Ann. 277 (1987) 709-725; Part II: Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinb. 109A (1988) 145-172; Part III: Nonlinear Lipschitz perturbations in the sun-reflexive case, In: G. Da Prato, M. Iannelli (eds.), Volterra Integro Differential Equations in Banach Spaces and Applications, Longman, (1989) 67-89; Part IV: The intertwining formula and the canonical pairing, In: Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics, Vol. 116, Marcel Dekker Inc., New York- Basel (1989); Part V: Variation of constants formulas, In: Semigroup Theory and Evolution Equations, Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York -Basel (1991). | Zbl | MR
[GN] and , Order structure of the semigroup dual: a counterexample, Indag. Math. 92 (1989) 199-201. | Zbl | MR
[GM] and , Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin (1979). | Zbl | MR
[M] , Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York (1991). | Zbl | MR
[MG] , Sur la continuité de la variation, C. R. Soc. Sci. de Varsovie, 21 (1928) 164-177. | JFM
[Na] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer Lect. Notes in Math. 1184 (1986). | Zbl | MR
[Ne] , The Adjoint of a Semigroup of Linear Operators, Lect. Notes in Math. 1529, Springer-Verlag, Berlin, Heidelberg, New York (1992). | Zbl | MR
[NP] and , Certain semigroups on Banach function spaces and their adjoints, In: Semigroup Theory and Evolution Equations. Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York- Basel (1991). | Zbl | MR
[Pa1] , A characterization of sun-reflexivity, Math. Ann. 283 (1989) 511-518. | Zbl | MR
[Pa2] , A Wiener-Young-type theorem for dual semigroups, Appl. Math. 27 (1992) 101-109. | Zbl | MR
[Ph] , The adjoint semi-group, Pac. J. Math. 5 (1955) 269-283. | Zbl | MR
[P1] , Eine Kennzeichnung der totalstetigen Funktionen, J. f. Reine u. Angew. Math. 60 (1929) 26-32. | JFM
[S] , Banach Lattices and Positive Operators, Springer Verlag, Berlin, Heidelberg, New York (1974). | Zbl | MR
[WY] and , The total variation of g(x + h) - g(x), Trans. Am. Math. Soc. 35 (1933) 327-340. | Zbl | MR | JFM
[Z] , Riesz Spaces II, North Holland, Amsterdam (1983). | Zbl | MR





